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Abstract This review article provides an overview of structurally oriented experimental datasets
that can be used to benchmark protein force fields, focusing on data generated by nuclear mag-
netic resonance (NMR) spectroscopy and room temperature (RT) protein crystallography. We dis-
cuss what the observables are, what they tell us about structure and dynamics, what makes them
useful for assessing force field accuracy, and how they can be connected to molecular dynamics
simulations carried out using the force field one wishes to benchmark. We also touch on best
practices for setup and analysis of benchmark simulations. We hope this article will be particularly
useful to computational researchers and trainees who develop, benchmark, or use protein force
fields or machine learning models that generate protein ensembles.
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It is a truth universally acknowledged that a research
group in possession of a good force field must be in
want of a benchmark.

1 Introduction
The earliest computer simulations of biomolecules could ex-
plore only sub-nanosecond phenomena [1–3], but advances
in computing hardware [4, 5] and simulation algorithms
[6, 7] now enable the simulation of processes that occur
on biologically relevant time scales, enabling informative
studies of, for example, protein conformational changes
[8, 9], ligand binding [10–12], protein folding [13, 14], and
the assembly of multi-protein complexes [15]. As a con-
sequence, simulations have become increasingly useful
tools to improve our understanding of protein functions,
elucidate molecular mechanisms of human disease, and
design small molecule drugs that work by binding targeted
proteins. Although knowledge-based heuristic approaches
[16] and approaches based on deep learning [17] may be
the current methods of choice for predicting the most stable
conformation of a protein [18], studying the thermodynam-
ics of phenomena such as conformational changes and
ligand binding still requires simulation-based sampling of
conformations away from the global energy minimum.

Molecular simulations—such as molecular dynamics
and Monte Carlo simulations—are, in effect, importance-
weighted sampling methods [19]. They sample conforma-
tions from a Boltzmann-weighted ensemble, where the
Boltzmann weight is based on a potential function, also
known as an energy model. A simulation with a sufficiently
accurate potential function will sample protein conforma-
tions from a probability distribution function similar to that
of the ground truth thermodynamic ensemble. These con-
formations, or snapshots, make up a simulation trajectory.
Physical observables can be computed as Boltzmann aver-
ages over a simulation trajectory becausemost experimental
observables are averages over time for many molecules.
The more conformations are sampled, the greater the nu-
merical precision of the physical property estimates. Given
a sufficiently large number of conformations, the reliability
of the predictions is no longer determined by the amount of
sampling and depends instead on the accuracy of the energy
model and the method used to compute the property of
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interest from the trajectory. Not surprisingly, there is a
strong tradeoff between precision, which is determined
by the amount of sampling done, and accuracy, because
more accurate energy models are more computationally
costly and thus reduce the amount of sampling that can be
achieved. For example, quantum chemical energy models
can be highly accurate but remain too slow to provide
adequately converged estimates of many properties of
interest or to simulate phenomena on biologically relevant
time scales. Therefore, the simulation community has a
continued interest in far more computationally efficient
energy models called force fields. These are parameterized,
physics-based energy models that use simple approxima-
tions of interatomic interactions and thus can be evaluated
quickly, enabling relatively fast conformational sampling.

Force fields specifically for proteins composed of the 20
canonical amino acids date back to the 1980s and 1990s,
and their parameters were typically derived from quantum
chemical calculations or from the bulk properties of neat liq-
uids chosen as small molecule analogs of protein fragments
[20–22]. The quality of these force fields was then evaluated
by running simulations of proteins in water and computing
the root mean square deviation (RMSD) of the simulated
protein’s atomic coordinates from the corresponding coordi-
nates of a static crystal structure of the protein. Over time, a
growing collection of structural and dynamical data on pro-
teins, generated by X-ray diffraction and nuclear magnetic
resonance (NMR) experiments, has enabled more detailed
evaluations of the conformational ensembles produced by
protein force fields [23–28]. Deficiencies identified in these
assessments have motivated further tuning of protein force
fields, such as the addition of protein-specific corrections
to the force fields’ torsional parameters [29–35]. Further
information on the history of today’s protein force fields is
available in prior reviews [36–40].

Although modern protein force fields have been fruitfully
applied, they still provide only approximations to the true
quantum mechanical energies, and it is not possible to pre-
dict a priori the consequences of the approximations made
for the calculation of quantities of interest. Additionally, the
different research groups that develop force fields often pri-
oritize conflicting goals, such as accuracy for the simulation
of folded versus disordered proteins or for the prediction of
structural versus thermodynamic properties. A given pro-
tein force field therefore models some observables better
and others less well. Thus, to obtain a well-rounded picture
of a force field’s strengths and weaknesses, it is essential to
benchmark it against a variety of data types. Moreover, pub-
lications of new force fields often validate their parameters
on different subsets of the available experimental datasets,
making it difficult to directly compare a new force field with

established ones [41]. It is therefore important to work to-
ward a common set of accepted benchmarks that will enable
force fields to be compared on a common footing.

In this article, we review and describe experimental data
that interrogate a range of structural and dynamical features
of proteins and therefore are useful to benchmark the accu-
racy of protein force fields. While not the focus of the article,
we also note that many of these datasets could be used to
benchmark the increasing number of machine learningmod-
els that generate protein conformational ensembles or pre-
dictions of protein motions [42, 43]. We focus on experimen-
tal observables that provide detailed information about pro-
tein conformational ensembles under conditions similar to
those of greatest interest for protein simulations, i.e., well-
hydrated proteins near room temperature and pressure. We
consider only datasets that involve water-soluble (i.e., non-
membrane bound) proteins and peptides without ligands or
co-factors, because when non-protein molecules (e.g., mem-
brane lipids or drugmolecules) are present in the simulation,
the results depend on not only the protein force field but also
the force field used for these other compounds. That said,
since we are interested in proteins in water, the accuracy
of the simulations necessarily also depends on the choice
of water model. This article is intended for computational
researchers who develop, benchmark, or use protein force
fields. We thus assume familiarity with molecular dynamics
techniques, force field terms, and the basics of protein struc-
ture, but not with the experimental techniques used to gen-
erate the data.

The remainder of the review is organized into four
sections. Section 2 summarizes key points and recommen-
dations. Section 3 describes experiments using nuclear
magnetic resonance (NMR) spectroscopy, and Section 4
describes experiments using room-temperature (RT) crys-
tallography. In each of these two sections, we first review
the types of observables provided by the experiments, why
they are useful for interrogating protein conformational
dynamics, and how they can be calculated from simulation
trajectories. Then, we describe specific datasets containing
measurements of these observables for peptide or pro-
tein systems, as summarized in Table 1. Finally, Section
5 discusses best practices for setting up and analyzing
benchmark simulations.

2 Overall Recommendations for
Choosing Benchmark Datasets

Although early benchmarks of protein force fields compared
simulations of solvated proteins to corresponding X-ray
structures—i.e., to single structural models from crystal
diffraction experiments—more recent benchmarks utilize
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experimental observables from solution experiments like
NMR. Such experiments match the conditions of dilute
aqueous solutions most commonly used for protein simu-
lations, and NMR observables include information about
excursions from native structures that contribute to solution-
phase ensembles. In contrast, there are fewer studies that
evaluate the ability of force fields to reproduce diffraction
observables in crystal simulations. Crystal simulations are
not applicable to disordered proteins and require larger and
longer simulations to converge estimates of observables. In
addition, methods of comparing experimental observables
with those estimated from simulations are not as well devel-
oped. Nonetheless, we have included a section on crystal
observables because these provide additional information
on the structure, interactions, and dynamics of proteins. As
computational throughput continues to increase, we hope
that benchmarks targeting crystal observables become
more commonplace.

Table 1 summarizes many existing experimental
datasets—both NMR and crystallographic—suitable for
benchmark studies of protein force fields. We recommend
that a minimal benchmark include at least one dataset
containing peptides, folded proteins, and disordered
proteins—because a generally applicable protein FF should
work for all three cases. We further recommend using
datasets that target the following observables, as listed in
the second column of Table 1:

• chemical shifts
• scalar couplings
• residual dipolar couplings
• electron and nuclear densities from Bragg diffraction

The first three are useful because they have low experi-
mental uncertainty, fast convergence in simulations, and a
consensus on best practices for estimating the observables.
Although Bragg diffraction lacks such a consensus and
converges slowly, it stands out from the other observables
considered in this review because it informs on protein ter-
tiary structures while having low experimental uncertainty.
See Table 2 for a summary of the salient qualitative features
of each observable: whether the experimental uncertainty
is high or low, whether the estimate of the observable
from simulations converges quickly or slowly, whether the
observable primarily provides information about the local
structure or tertiary structure of proteins, and whether
there is a consensus in the literature on best practices for
comparing simulations to experiments.

Convergence always requires sampling the main free
energy basins of the protein ensemble, and this can be
slow. However, it is still useful to define ”quickly” converging
properties, which require only a modest amount of sam-

pling within each free energy basin, and ”slowly” converging
properties, which require extensive sampling within each
free energy basin. Additionally, consensus on best practices
represents the present authors’ opinion about whether
studies have converged on a single method for computing
observables from simulations. Detailed discussion of conver-
gence behavior and consensus on methodology is provided
in the respective sections on each observable below.

The other observables (nuclear Overhauser effect intensi-
ties, spin relaxation rates, paramagnetic relaxation enhance-
ments, crystallographic B-factors, crystallographic alternate
conformations, and diffuse crystallographic scattering inten-
sities) are less ideal because each exhibits some combination
of high experimental uncertainties, slow convergence in sim-
ulations, or lack of consensus on best practices for estimat-
ing the observable. We therefore recommend that they be
deprioritized under circumstances of limited computational
resources. Nonetheless, these observables can provide use-
ful alternative characterizations of protein structural ensem-
bles. Note, too, that some can be estimated from the same
trajectories used to estimate observables in the first list. For
example, simulations used to estimate Bragg diffraction in-
tensities could also be used to estimate B factors. One ap-
proach is to perform a two-tier benchmark, in which the first
tier uses the first list of observables to assess many candi-
date force fields, and the second tier uses the second list to
assess force fields that perform well on the first tier.

Finally, although one may aspire to compare molecular
simulations ”directly” with experiment, this is impossible.
Experimental observables are raw data like radio frequency
signals collected during NMR studies and speckle patterns
collected during crystallographic experiments, while simula-
tions give atomic coordinates over time. Thus, models, with
their own assumptions and parameters, are needed to bring
calculation together with experiment for comparison. For
example, computing chemical shifts from molecular simula-
tions requires a model (Section 3.1.1), and a protein crystal
structure is a model based on diffraction data (Section 4.1.1).
Thus, the agreement between experimental and computed
observables should be interpreted with an understanding
of the models used in estimating the observable from a
simulation and the experimental observable itself from the
raw data, as previously emphasized [104, 105].

3 Nuclear magnetic resonance (NMR)
spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy measures
the responses of nuclear magnetic moments in a strong ex-
ternal magnetic field to perturbations by weak oscillating ex-
ternal magnetic fields tuned to the resonant frequency of
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Table 1. Summary of experimental datasets for benchmarking protein force fields. The ”Proteins” column counts the number of proteins in
the dataset. For crystal datasets, this includes datasets of the same protein crystallized in different space groups.

Dataset Observables Description Proteins

Nuclear magnetic resonance spectroscopy

Beauchamp short pep-
tides [44]

Chemical shifts, J-couplings Short, unstructured peptides 31

Designed β-hairpins
[45–65] and Trp-cage
miniproteins [66–78]

Chemical shifts, NOEs, folding stabili-
ties

Small, folded peptides withmutations 92

Stroet folded proteins
[79]

J-couplings, RDCs, NOEs Folded proteins 13

Mao folded proteins [80] Chemical shifts, NOEs Diverse folded proteins 41
Robustelli a99SB-disp
[81]

Chemical shifts, J-couplings, RDCs,
NOEs, PREs

Folded proteins and disordered pro-
teins

21

Spin relaxation datasets
[82–85]

Spin relaxation rates Folded proteins and disordered pro-
teins

136

Salt bridge stabilities [86] Salt bridge stabilities derived from
chemical shifts

Folded proteins 1

Room-temperature crystallography

Scorpion toxin [87] Electron density, B-factors Folded protein with little secondary
structure

1

Hen egg white lysozyme
[88–93]

Electron density, B-factors, diffuse
scattering

Rigid, folded protein 3

Crambin [94–96] Electron density, B-factors, neutron
scattering

Rigid, folded protein 1

Cyclophilin A [97–99] Electron density, B-factors, alternate
conformations

Folded protein with multiple accessi-
ble states and crystal data at different
temperatures

1

Ubiquitin [100] Electron density, B-factors, alternate
conformations

Folded protein with mutations 2

PTP1B [101] Electron density, B-factors, alternate
conformations

Folded protein with multiple accessi-
ble states and crystal data at different
temperatures

1

Endoglucanase [102] Electron density, B-factors, neutron
scattering

Foldedproteinwithmeasured solvent
density

1

Staphylococcal nuclease
[103]

Electron density, B-factors, diffuse
scattering

Folded protein 1

the nuclei. The observed responses are sensitive to the lo-
cal magnetic fields at the nuclei, which in turn depend on
what other nuclei are nearby. As a consequence, NMR spec-
troscopy provides information about the local chemical en-
vironments of atoms and hence about the conformational
distributions and dynamics of the molecules they belong to.

NMR is applicable to nuclei with an odd number of
nucleons and hence nonzero nuclear spin—such as 1H, 13C,
15N, 19F, and 31P—because these possess a magnetic dipole
moment. In the presence of a strong external magnetic field,

this dipole precesses around the external field, much as a
spinning top precesses around the downward gravitational
field. The angular frequency of the precession, which is
called the Larmor frequency, is proportional to the strength
of the magnetic field at the nucleus, with a proportionality
constant characteristic of the nuclear isotope. If a second,
weak magnetic field that oscillates near the Larmor fre-
quency is applied, the axis of precession will rotate away
from the direction of the strong external field. An NMR
spectrometer detects the resulting transverse magnetiza-
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Table 2. Summary of features of experimental observables.

Observable Experimental Convergence Structural Consensus on
uncertainty information best practices

Nuclear magnetic resonance spectroscopy

Chemical shifts Low Fast Local Yes
Scalar couplings Low Fast Local Yes
Residual dipolar couplings Low Fast Tertiary Yes
Nuclear Overhauser effect spectroscopy High Slow Tertiary No
Spin relaxation High Slow Tertiary No
Paramagnetic relaxation enhancement High Slow Tertiary No

Room-temperature crystallography

Bragg diffraction (X-ray and neutron) Low Slow Tertiary No
B-factors High Fast Local Yes
Alternate conformations Low Slow Local No
Diffuse scattering High Slow Tertiary No

tion by measuring the electrical current it induces in a coil
of wire. Although the value of the Larmor frequency is
determined chiefly by the strong external magnetic field, the
electronic structure near each nucleus, which is influenced
by through-bond and through-space interactions, modulates
the field felt by the nucleus and hence its Larmor frequency,
so NMR probes the local environment of the nucleus. Addi-
tionally, magnetization can be transferred to nearby nuclei
via through-space interactions, so NMR can report on the
relative dispositions in space of pairs of nuclei. These two
effects give NMR spectroscopy its sensitivity to the structure
and dynamics of proteins. In practice, specific sequences
of radiofrequency pulses are crafted to interrogate various
aspects of these relaxation phenomena.

NMR observables have several useful features that have
led to their adoption as targets for both training and vali-
dation of protein force fields [106]. First, NMR experiments
are typically performed in laboratory conditions that are
similar to the desired setup for most simulation applications,
namely dilute aqueous solution. Note, however, that NMR
studies are often done at moderately low pH (often around
pH 6) to minimize effects from amide proton exchange
with solvent. Thus, it is important that simulations meant
for comparison against NMR data assign pH-appropriate
protonation states of titratable residues and uncapped
protein termini. Second, in contrast with typical X-ray or
neutron crystallography experiments, NMR spectroscopy
can provide useful information about disordered proteins,
i.e., proteins that do not fold into a well-defined structure
that can crystallize. Furthermore, whereas other methods
applicable to disordered proteins, such as small-angle X-ray

scattering, provide only low-resolution structural informa-
tion, NMR observables can report on structural features
that are closely related to specific force field terms, such
as the probability distributions of rotatable bonds, which
connect closely with the torsional energy terms for a par-
ticular dihedral angle. Finally, because NMR observables
are averages over ensembles that include deviations from
native structures, they can report on the thermodynamic
balance among native states, near-native states with lo-
cal rearrangements, and unfolded states, a perspective
not readily available from crystallography. Indeed, while
early protein force fields tended to maintain the correct
structures of folded proteins, which is favorable, they often
underestimated local fluctuations of folded proteins about
their mean structures yet overestimated the amount of
transient secondary structure in loops or disordered regions
of proteins [29–34]. Such deficiencies were identified and
largely corrected by comparisons with NMR observables
that report on the fluctuations in folded proteins and the
amount of residual structure in more disordered regions.

Here, Section 3.1 discusses NMR observables that can be
used to assess the accuracy of molecular simulations and
hence of the force fields used in simulations. The observ-
ables considered are chemical shifts, scalar couplings (also
known as J-couplings), residual dipolar couplings (RDCs),
the nuclear Overhauser effect (NOE), spin relaxation, and
paramagnetic relaxation enhancement (PRE). Section 3.2
then presents available experimental NMR datasets that are
well suited for evaluating simulations.
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3.1 NMR observables
3.1.1 Chemical shifts
General principles
The chemical shift of a nucleus—the difference of its Larmor
frequency from that of the same isotope in a reference
compound—probes the degree to which the nuclear spin
”feels” the externally imposed magnetic field. This is de-
termined by its electronic environment, which in turn is
controlled by the details of the local molecular structure. In
a protein, one can consider the chemical shift of a nucleus
as having a baseline offset—resulting from its local covalent
connectivity and bond hybridization—and an additional
shift determined by both its local geometry (bond lengths,
bond angles, and dihedral angles) and through-space
interactions—resulting from electric fields, hydrogen bonds,
and the proximity of chemical groups that contain substan-
tial magnetic anisotropy, such as aromatic rings [107–109].
The sensitivity of a given nucleus to each of these influences
depends on its chemical identity (atomic number), covalent
structure (bond hybridization), and chemical environment.
If ω is the observed Larmor frequency of a nucleus in a
particular molecular context, and the reference Larmor
frequency for the same isotope is ω0, the chemical shift, δ, is
reported as

δ = ω – ω0
ω0

(1)

Because ω and ω0 are similar, δ is typically reported in parts
per million (ppm).

Empirical algorithms have been developed to predict
the chemical shifts of protein backbone atoms for a given
set of three-dimensional coordinates. These algorithms—
implemented in software packages that include SHIFTS
[110], PROSHIFT [111], Camshift [112], SPARTA+ [113],
SHIFTX2/SHIFTX+ [114], PPM/PPM_One [115, 116], UCB-Shift
[117], and GraphNMR [118]—are trained on databases of
proteins for which both high-resolution X-ray structures
and solution backbone NMR chemical shift assignments
are available. They take protein coordinates as inputs and
output a chemical shift prediction for the backbone nuclei
of Cα, Cβ, C′, N, HN, and Hα atoms (Figure1). Each nucleus
type has a baseline offset, δrandom, determined by its identity,
which reflects the chemical shift expected if the protein
were in a random coil conformation. This baseline offset is
modified by additive terms for specific structural features.
The structural features with the largest influence on the
backbone nuclei of a given residue are the backbone and
side chain dihedral angles of that residue and of neighboring
residues within two positions in primary sequence; the dis-
tances and orientations of nearby aromatic rings and other
chemical groups with substantial magnetic anisotropy; the

R

C′

O

N

HN

C¸

H¸C˛

C‚

C′

O

N

HN

R
ffi  

ffl1

Figure 1. Atom names and named dihedral angles associated with
commonly measured chemical shifts and 3J-couplings in a typical
amino acid. Side chain hydrogens such as Hβ are omitted for clar-
ity.

presence and geometry of hydrogen bonds; the proximity
of polar and charged nuclei; and the solvent exposure of the
residue.

Of these, the main determinants of backbone chemical
shifts are local dihedral angles (see Figure 1). The Cα and Cβ
shifts of residue i are most sensitive to the ϕ and ψ angles of
the same residue, ϕi and ψi. C′ shifts are most sensitive to
the ψ angles of residue i and the following residue i + 1, ψi
and ψi+1. N shifts are most sensitive to the χ1 angle of that
residue and the ψ angle of the preceding residue i–1, χ1i and
ψi–1. Proton shifts are more sensitive to non-bonded interac-
tions than are those of carbon and nitrogen atoms. In par-
ticular, HN and Hα shifts are very sensitive to the presence
of aromatic ring currents, HN shifts are particularly sensitive
to hydrogen bond geometries, and Hα shifts are sensitive to
electric fields from nearby polar and charged atoms.

The field of empirical protein backbone chemical shift
prediction is relatively mature, with a high degree of consen-
sus in the predictions of algorithms published in the last 20
years. Three of the first broadly applicable protein chemical
shift prediction algorithms are SHIFTS [110], SHIFTX [109],
and PROSHIFT [111]. Of these, SHIFTX generally produces
the most accurate predictions on protein structures not
contained in its training databases, and it requires only
a few seconds to predict all backbone shifts in a protein.
Later, the SPARTA algorithm [119] provided a small im-
provement in prediction accuracy, with somewhat slower
calculation times. The program Camshift [112], published
in 2009, produced comparable accuracy to SHIFTX and
SPARTA. Camshift utilizes polynomials based on interatomic
distances that can be evaluated in milliseconds and are dif-
ferentiable with respect to atomic coordinates, enabling the
computationally efficient incorporation of chemical shifts
as structural restraints in MD simulations. Taken together,
SPARTA, SHIFTX, and Camshift represented important mile-
stones in the field, as their predictions were good enough
to enable the prediction of accurate protein structures
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using only NMR chemical shifts combined with molecular
mechanics force fields or knowledge-based potential energy
functions [120–124]. SPARTA, SHIFTX, and Camshift were
also found to be sensitive to the conformational fluctuations
of proteins observed in MD simulations, and they were
utilized to computationally generate protein conformational
ensembles that accurately model the dynamics of proteins
[125–128] and to guide the optimization of protein force
field torsion terms [81, 129]. PPM was parameterized using
MD simulations as input (rather than X-ray structures), thus
aiming to link conformational ensembles to chemical shifts
[115].

A more recent generation of empirical shift predictors—
including SPARTA+ [113], SHIFTX2/SHIFTX+ [114], PPM_One
[116], UCB-Shift [117, 130], and GraphNMR [118]—were
developed using machine learning techniques (although the
earlier method PROSHIFT [111] is also based on a neural
network). They provide improved accuracy, have very similar
accuracy to one another, and typically produce very similar
results in practical applications such as the validation of
MD ensembles, the fitting of force field corrections, the
calculation of protein structures and structural ensembles,
and the reweighting of MD trajectories. Despite the ac-
curacy of these methods, their errors are still an order of
magnitude larger than the experimental uncertainties in the
chemical shifts themselves, so experimental uncertainties
can generally be neglected when comparing calculation to
experiment.

In addition to empirical prediction algorithms trained on
databases of protein structures, other prediction algorithms
use quantum mechanical calculations on local fragments of
proteins to estimate chemical shifts. Quantum predictors
aim to estimate the shielding of the magnetic moment of a
nucleus due to its local environment in a particular confor-
mation, and these methods are sensitive to small changes
in the coordinates of the input structure. While quantum
predictors can achieve good agreement with experimental
chemical shifts when averaged over many conformations in
a protein’s ensemble [131, 132], they typically provide lower
accuracy and computational speed than empirical predictors
[133–138].

Programs have also been developed to calculate the NMR
chemical shifts of protein side chain atoms, but they tend to
be less informative than backbone chemical shift predictors
[114, 116, 130, 139, 140]. This is because the predictors tend
to be less accurate, due to a smaller database of training data,
and because the experimental chemical shifts for each atom
type tend to have small ranges and can take on similar values
for different side chain conformations.

Evaluation of MD simulations using chemical shifts
The chemical shift of a given nucleus in a protein can be esti-
mated froma simulation as a simple average of the predicted
chemical shifts over the Nframe simulation frames:

⟨δ⟩ = 1
Nframe

Nframe∑
t=1

δt (2)

Here t indexes simulation frames, and δt is the chemical
shift predicted for simulation frame t using one of the meth-
ods discussed above. Deviations between chemical shifts
predicted from MD trajectories and experimental shifts are
sensitive indicators of errors in MD ensembles. Accordingly,
NMR chemical shift predictions are routinely used to assess
the accuracy of MD simulations, and torsion terms in protein
force fields have been parameterized by optimizing the
agreement between experiment and simulation [81, 129].

Backbone chemical shift predictions computed from MD
ensembles that have large deviations from experiment—i.e.
greater than one- to two-fold higher than the average
predictor accuracy for a given backbone atom type (e.g., Cα)
as assessed on a predictor’s training databases—indicate
substantial inaccuracies in the simulated ensemble. The
largest deviations generally reflect incorrect secondary struc-
tures and/or side chain rotamers. Smaller deviations can
result from inaccurate distributions of tertiary interactions
in the MD ensemble, including hydrogen bonds, electro-
static interactions from charged groups, and aromatic ring
currents. The latter are particularly important for proton
chemical shifts. For disordered proteins, backbone chemical
shifts are very sensitive to the presence of partially popu-
lated secondary structure elements, and deviations from
experiment can indicate that MD ensembles overestimate
or underestimate α-helical, PPII, or β-sheet propensities.

When comparing calculated and experimental backbone
chemical shifts, one should keep the following considera-
tions in mind.

First, chemical shift prediction algorithms are imperfect,
so isolated errors in individual atoms or residues may
not imply problems with a simulation. However, a series of
residues with several atoms having large deviations between
predicted and experimental shifts probably does reflect an
error in the conformational distribution of the simulation.
The average prediction accuracy on the database of X-ray
structures used to train a given predictor provides a rea-
sonable baseline to identify problematic simulations. For
example, the standard deviation of Cα shift predictions
made by SPARTA+ is 0.94 ppm for its training database, so
a contiguous stretch of residues with Cα prediction errors
greater than 1.5 ppm probably indicates a problem with the
simulated ensemble, whereas a simulation where the errors

8 of 47 https://doi.org/10.33011/livecoms.6.1.3871
Living J. Comp. Mol. Sci. 2025, 6(1), 3871

https://doi.org/10.33011/livecoms.6.1.3871


A LiveCoMS Perpetual Review

are less than 1.00 ppm is relatively reliable.
Second, as noted above, the chemical shifts of the

backbone nuclei (atom types Cα, Cβ, C′, N, HN, Hα) of each
residue type have large baseline offsets, δrandom, which are
determined by chemical identity—i.e., by their covalent
structure—rather than by any time-dependent conforma-
tional variation that might be sampled in a simulation
[141–144]. The random coil shifts of a given backbone atom
type can vary more strongly across residue types (e.g., ∼50
ppm for Cβ between Ala and Thr [145]) than across residues
of a given type (e.g., 3 ppm to 5 ppm for Ala Cβ atoms) due
to conformational variations [146, 147]. As a result, it can
be highly misleading to visualize correlations and report
correlation coefficients between experimental chemical
shifts and shifts predicted from MD simulations, as most of
the magnitude in deviation between different residues can
be explained by differences in their baseline δrandom values.
Indeed, extremely high correlation coefficients (close to
1.0) can be obtained by comparing experimental chemical
shifts to database random coil chemical shift values without
utilizing any structural information [112–114, 142]. A more
informative visualization of the accuracy of chemical shift
predictions from anMD simulation is provided by comparing
the deviations between predicted and experimental shifts
separately for each residue type. Alternatively, one can
compare predicted and experimental “secondary” chemical
shifts, which subtract the random coil chemical shift values
from both experimental and predicted shifts and thus put
all residues on comparable footing.

Third, empirical chemical shift predictions depend on
many structural features, so one cannot be sure what
conformational error causes a given prediction error. For
example, a deviation of 1.5 ppm for an N atom may result
from a side chain populating an incorrect rotamer or an
aromatic group being incorrectly positioned.

Fourth, chemical shift prediction error is sequence- and
conformation-specific and so should not be used to compare
the accuracy of simulations of two different proteins or of
two different regions of one protein. For example, chemical
shift prediction errors for β-sheet proteins are substantially
higher than forα-helical proteins [118], so a simulation of a β-
sheet protein may yield worse agreement with experimental
chemical shifts than an equally accurate simulation of an α-
helical protein. In contrast, when one protein is simulated
with multiple force fields, the accuracy of the chemical shift
predictions is a clear indication of the relative accuracy of the
simulations and hence of the force fields. Note that scalar
couplings do not have this limitation, as detailed in Section
3.1.2.

Fifth, in principle, chemical shift predictions computed
from accurate, thermalized conformational ensembles

should be more accurate than predictions computed from
static protein structures. However, the most accurate chem-
ical shift prediction algorithms are trained against static
X-ray structures (with PPM being one exception [115]). As a
result, some amount of conformational averaging is ”baked
in” to these prediction algorithms; that is, chemical shifts
predicted from static conformations already implicitly ac-
count for the solution-phase averaging over conformations.
This fact may help account for the fact that chemical shifts
predicted based on X-ray structures are often (though not
always) more accurate than predictions fromMD ensembles
[125–128]. However, the lower accuracy obtained with
simulations does not necessarily point to inaccuracies of
simulations. Indeed, MD simulations that yield excellent
agreement with other NMR observables (such as NMR scalar
couplings or residual dipolar couplings; see below), which
are thus presumably quite accurate, may produce less ac-
curate chemical shift predictions than static high-resolution
X-ray structures [81, 125, 127].

Sixth, comparisons between simulated and experimental
chemical shifts are particularly informative regarding the
accuracy of simulations of disordered proteins and peptides.
The lack of stable tertiary structure in such systems means
that through-space interactions are largely washed out so
that chemical shifts are dominated by backbone dihedral
angles, which are the most accurately parameterized and
least noisy relationships in backbone chemical shift pre-
dictors [148]. As a result, chemical shifts computed for
disordered proteins can be more accurate than chemical
shifts computed for training databases of X-ray structures of
folded proteins. For example, C′ chemical shift predictions
obtained from simulations of disordered proteins and pep-
tides that agree with orthogonal NMR data or with circular
dichroism data frequently have RMSDs from experiment
less than 0.5 ppm, whereas C′ prediction errors for folded
proteins average∼1 ppm. Indeed, simulations of disordered
proteins with state-of-the-art force fields regularly achieve
prediction RMSDs a factor of 2 lower than the average
predictor errors observed on databases of folded proteins,
with a substantial dynamic range such that agreement with
chemical shifts correlates well with the agreement with
orthogonal experimental data [81, 128, 148, 149]. Therefore,
when several different force fields yield predicted chemical
shifts for disordered proteins with RMSDs lower than typ-
ically observed for folded proteins, differences across the
force fields being tested should not be dismissed as being
within prediction error but instead should be regarded as
meaningful and informative.

Seventh, there is not a one-to-one mapping between
conformational distributions and chemical shifts [150]. As a
consequence, many different conformational ensembles can
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produce equivalent agreement with experiment [151–153].
For example, the same C′ chemical shift prediction can be
obtained from many different ϕ/ψ dihedral distributions;
and two ensembles with extremely different ϕ/ψ dihedral
distributions for a given residue can produce identical
chemical shift predictions for a Cα atom if, for example, it
is exposed to an aromatic ring current in one ensemble
and not the other. The degeneracy between conformations
and chemical shifts can often be resolved by analyzing the
chemical shifts of multiple nuclei.

Eighth, different programs for predicting chemical shifts
tend to yield very similar results, so the choice of method
is not expected to have much effect on conclusions. How-
ever, some chemical shift predictors utilize sequence homol-
ogy for part or all of their predictions, and a prediction based
on sequence homology rather than three-dimensional struc-
ture ipso facto does not report on the accuracy of a struc-
ture. For example, the SHIFTX2 predictor is a weighted av-
erage between a structure-based predictor, SHIFTX+, and a
homology-based predictor, SHIFTY. It is recommended to use
only structure-based predictors for validation of MD simula-
tions and to use the same method consistently across the
trajectories being compared.

Evaluation of force fields via structural properties
derived from chemical shifts
Measured chemical shifts can be used to derive structural
information, such as the helicity of a peptide in solution.
Simulations can then be evaluated based on their agree-
ment with these experimentally derived structural data. This
indirect approach avoids the complications of predicting
chemical shifts from simulations, instead relying on the
availability of reliable methods to map from chemical shifts
to structures. While we generally recommend direct com-
parison between observables computed from simulations
and those measured experimentally, indirect structural
comparisons can be more interpretable and can help guide
improvements in parameters. Also, as noted in the final
paragraph of section 2, even measured observables like
chemical shifts rely on interpretation to obtain the observ-
ables from raw experimental data, so there may be no real
escape from the need to use interpretation, which may be
imperfect. Two examples of structural models that can be
used in this way, helical propensities and stabilities of salt
bridges and salt bridge analogs, are now considered.

Accurate protein force fields should be able to model the
preferences for proteins to adopt particular secondary struc-
tures. Helical propensity in a particular sequence context is
oftenmodeled using the expected fraction of time that a par-
ticular non-terminal residue adopts an α-helical backbone
conformation, and the fractional helicity of a residue can be

measured because α-helical residues form backbone hydro-
gen bonds that alter the chemical shift of the C′ carbons in
13C-labeled proteins [154]. We note here that this commonly
used dataset wasmeasured in D2Oas a solvent. Since the he-
licity will likely be different in H2O and D2O [155], one should
not expect perfect agreement in simulations with watermod-
els that represent H2O. Assuming a two-state helix-coil tran-
sition, the helical fraction can be calculated using

fhelix =
δobs – δcoil
δhelix – δcoil

(3)

where δobs, δhelix, and δcoil, are, respectively, the C′ chemical
shifts observed in the experiment, in the reference helical
state, and in the reference coil state. Meanwhile, a simulation
can be analyzed to provide the fraction of time each residue
is in a helical conformation, based on its backbone dihedral
angles or hydrogen bond occupancies, and the results can
be compared with the results inferred from chemical shifts
[156]. Alternatively, researchers can fit simulated conforma-
tions to a helix-coil transition model such as the Lifson-Roig
model [157]. A commonly used variant of the Lifson-Roig
model expresses the partition function of a two-state helix-
coil system in terms of two parameters: a nucleation param-
eter describing the likelihood for a residue to sample the heli-
cal dihedral angles in the coil state and an extension parame-
ter describing the likelihood for a neighboring residue at the
end of a helix to transition from the coil to the helix state.
These two parameters can be allowed to take different val-
ues for each residue type, and the resulting set of param-
eters can be fit to the fraction of helix from the simulation
and then compared to parameters derived from experimen-
tal data [156].

Another important characteristic of protein force fields is
the ability to accuratelymodel the formation of salt bridges—
pairs of amino acids whose oppositely charged side chains
are within hydrogen bonding distance [158]. When a salt
bridge is formed, the presence of the anionic side chain al-
ters the chemical shift of nitrogen in the cationic side chain,
and this perturbation can be measured in 15N-labeled pro-
teins [86] or in small molecule analogs of these side chains.
Similar to the helical fraction, the fraction of salt bridge for-
mation can be calculated from the chemical shifts observed
in the experiment, along with reference shifts measured in
the presence and absence of the salt bridge. Simulations
can then be analyzed to provide the fraction of time the salt
bridge is present based on geometric criteria for hydrogen
bonding between the charged side chains.
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3.1.2 Scalar couplings
General principles
NMR scalar couplings, also known as indirect couplings or
J-couplings, are electron-mediated, spin-spin couplings that
act particularly strongly through covalent bonds and hence
are often described as through-bond couplings [159, 160].
Scalar couples occur when the magnetic field of a nuclear
spin modifies the behavior of nearby electrons, and this
modification propagates to nearby nuclei, resulting in an
indirect nucleus-nucleus coupling. Scalar couplings can be
observed in an NMR spectrum as the splitting of the reso-
nance peak of one nucleus into two (sometimes overlapping)
peaks. The value of the scalar coupling, also called the
coupling constant, is the distance between the split peaks in
the frequency domain and thus has units of reciprocal time
(e.g., Hz). These couplings can propagate through multiple
bonds, and three-bond couplings are of particular interest
because they provide a readout of the dihedral angle of the
central bond. Accordingly, three-bond couplings, termed
3J-coupling constants, have been utilized extensively in the
conformational analysis of small molecules [160] and pep-
tides [161] since the discovery of the Karplus relationship
[159], or Karplus equation, which relates the 3J-coupling
constant between two nuclear spins to the intervening
dihedral angle θ:

3J(θ) = A cos2(θ) + B cos(θ) + C (4)

Here the Karplus coefficients—A, B, and C—depend on the
identities of the nuclei involved in the coupling (e.g., 13C or
1H) and their local chemical environments, including bondhy-
bridizations, bond lengths, bond angles, and the electroneg-
ativities of nearby substituents [162]. There are also one-
bond 1J and two-bond 2J scalar couplings, which can have
more complex Karplus relationships that depend on more
than one dihedral angle [163–167].

Karplus equation coefficients used in conformational
analyses are generally empirically determined, based on
measurements of J-coupling constants in molecules of
known structure, and then transferred to analyze the dihe-
dral angles between nuclei in similar chemical environments
[159, 160, 162, 168, 169]. For a given pair of coupled nuclei,
the experimentally observed J-coupling is the probability-
weighted average of their instantaneous coupling over the
molecule’s thermalized conformational distribution.

In proteins and peptides, the 3J-couplings between
backbone amide protons and alpha protons (3JHN–Hα) report
on the ϕ dihedral angle of the peptide backbone (Fig.1)
and thus distinguish between α and β secondary structure.
These couplings were adopted as structural restraints in
early NMR protein structure calculations [170]. The values

of the Karplus coefficients for these 3J-coupling constants
have been the subject of frequent reexamination and
scrutiny [169, 171–176], including studies that examine the
consequences of harmonic motion and conformational
dynamics [169, 171, 172, 175, 177]. Although 3JHN–Hα are
the most frequently measured and reported 3J-couplings
for the protein backbone, five additional coupling constants
also report on the ϕ dihedral angle [178]: 3JHN–C′ , 3JHN–Cβ ,
3JC′(i–1)–Hα, 3JC′(i–1)–C′ , and 3JC′(i–1)–Cβ . It has also been shown
that one-bond 1J-couplings, such as 1JCα–Hα and 1JCα–Cβ , are
sensitive to the ψ angle of protein backbones [163, 164, 167].
The χ1 angles of protein side chains can be analyzed via the
following 3J-couplings [179, 180]: 3JHα–Hβ , 3JN–Hβ , 3JC′–Hβ ,
3JHα–Cγ , 3JN–Cγ , and 3JC′–Cγ . Additionally, 3JHN–C′ hydrogen
bond scalar couplings (scalar couplings between protein
backbone nitrogen and carbonyl atoms in different residues
that are mediated through hydrogen bonds) provide quanti-
tative information about hydrogen bond geometries [181].
Once Karplus coefficients are known, no specialized soft-
ware is required to compute scalar couplings for a protein
structure. One simply needs to calculate the dihedral angles
of interest and use them to predict the corresponding scalar
couplings via the Karplus relationship applied with the
appropriate Karplus coefficients. Special attention, however,
is needed to ensure correct mapping to the correct atoms
in cases when stereospecific assignments are available so
that, for example, the same definition of the atoms is used
in experiments and simulations.

Evaluation of force fields using scalar couplings
Observed J-coupling constants can be estimated from the
snapshots of an MD trajectory as

⟨J(θ)⟩ = 1
Nframe

Nframe∑
t=1

J(θt) (5)

where t indexes the Nframe simulation frames and J(θ) is
given by a Karplus relationship (Eq. 4). This mean can be
comparedwith the correspondingmeasured J-coupling. One
may therefore use J-coupling data to test [33, 44, 182–184]
and parameterize [30, 33, 81, 156, 185, 186] simulation
force fields. In such calculations, one must choose between
”static” and ”dynamics-corrected” Karplus coefficients. Static
coefficients are obtained from empirical fits of ensemble-
averaged solution data to high-resolution X-ray structures
and therefore do not explicitly account for the complexities
of conformational distributions during parametrization,
analogous to the ”baked in” dynamics of many chemical
shift predictors (Section 3.1.1). Dynamics-corrected Karplus
coefficients are obtained from empirical fits that seek to
account explicitly for the distributions of dihedral angles
of the molecule in solution using a variety of approaches,
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including single- and multiple-well harmonic motion models
as well as fitting of coefficients to rotamer population dis-
tributions obtained from other types of experimental data
[169, 171, 172, 175, 177, 180].

A recent study [81] examined the accuracy of 3J-couplings
computed with long MD simulations using several sets of
Karplus coefficients and seven different force fields for
a large set of NMR data spanning folded and disordered
proteins. The static 3JHN–Hα Karplus coefficients from Vogeli
et al. [169] and the static 3JC′(i–1)–C′ Karplus coefficients from
Li et al. [176] produced the lowest RMSD values from exper-
iment on average across force fields and protein systems.
The dynamics-corrected Karplus coefficients from Lee et
al. [175] gave similar trends in accuracy across force fields
but larger average deviations from the experimental cou-
plings. Karplus coefficients could be derived not empirically
but from quantum calculations for specific conformations,
thus avoiding the question of conformational averaging.
Karplus coefficients derived in this way have similar val-
ues as dynamics-corrected empirical Karplus coefficients
[169, 171, 172, 175, 177, 180].

When interpreting the NMR scalar couplings calculated
fromMD simulations, it is essential to consider the uncertain-
ties in the Karplus coefficients. This is frequently done using
a χ2 value [81, 186]:

χ2 = 1
Nobs

Nobs∑
i=1

(
⟨Ji(θ)⟩ – Ji,exp

)2
σ2i

(6)

where i indexes the Nobs observables, ⟨Ji(θ)⟩ and Ji,exp are the
computed (Eq. 5) and experimental J-coupling constants, re-
spectively, and σi is the RMSD between predicted and mea-
sured scalar couplings obtained in fitting of the Karplus pa-
rameters. Aχ2 value less than 1.0 indicates agreementwithin
the estimated uncertainty. It is alsoworth recalling thewords
of Martin Karplus [160]: ”The person who attempts to esti-
mate dihedral angles to an accuracy of one or two degrees
does so at …[their] own peril.”

3.1.3 Residual dipolar couplings
General principles
The direct interaction of the magnetic dipoles associated
with two nuclear spins leads to an experimentally mea-
surable coupling, known as a dipolar coupling. Similar to
scalar couplings, the dipolar coupling can be observed as
the splitting of a peak in the frequency domain and thus has
units of reciprocal time (Hz). The magnitude of the dipolar
coupling between the nuclear spins of atoms A and B for an
instantaneous configuration and orientation of the molecule
is given by

DAB =
D0
R3AB

(
3 cos2 θAB – 1

)
= D0
R3AB

r̂TABAr̂AB (7)

where D0 is a constant that depends on the identities of the
nuclei, RAB is the distance between the nuclei, and θAB is the
angle between the magnetic field imposed by the NMR in-
strument and the vector connecting atomsA andB [187–189].
The second equality expresses the quantity in parentheses in
terms of r̂AB, the unit vector joining the two nuclei, defined in
the internal coordinates of the molecule, and the alignment
tensor A, which relates an internal coordinate system to the
lab-frame magnetic field.

In a solution of freely tumbling molecules, DAB takes on
all possible values with equal probability, and the observed
dipolar couplings—which are averages over molecules and
time—are zero. However, if the molecules can be even
weakly aligned relative to the instrument’s magnetic field,
then DAB no longer averages to zero, and dipolar couplings
can report on the structure and conformational dynamics
of proteins. Such alignment may be achieved by linking the
protein to a prosthetic group that tends to align with the
field; by placing it in an aqueous liquid crystal formed by, for
example, bicelles [190, 191]; or by anisotropic compression
of acrylamide gels [192]. The dipolar coupling measured in
a weakly aligned sample is called a residual dipolar coupling
(RDC). RDCs are often measured between atoms that are
directly bonded. In proteins, these are often an amide
proton and nitrogen, resulting in a 1DNH RDC, but it is also
possible to measure RDCs between nuclei that are not
directly bonded. Although the alignment procedure could
in principle perturb the protein’s conformational ensemble,
consistency across differentmethods for alignment suggests
this is not a substantial concern [193].

Evaluation of MD simulations using residual dipolar
couplings
To use protein RDCs to benchmark a simulation, one must
estimate the alignment tensor, A. For folded proteins, it is
often reasonable to assume that the internal motions of the
protein and the alignment are mostly decoupled or that any
coupling does not contribute substantially to the RDCs [83,
194]. In this case, one may keep the concept of an align-
ment tensor, noting that this should be fitted over the full
ensemble rather than using a single structure [195, 196]. The
procedure and equations used in this fitting are the same as
for rigid proteins and typically rely on alignment of the MD
frames, followed by singular value decomposition (SVD) of
the unit vectors of the bonds of interest. With a set of ex-
perimental RDCs and a simulation, one can fit the five inde-
pendent parameters of the alignment tensor. In contrast, for
unfolded proteins, flexible peptides, and intrinsically disor-
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dered proteins, it is not possible to fit an average alignment
from the data because the alignment varies across conforma-
tions. Therefore, most analyses use a physical model to pre-
dict the alignment tensor for each conformation (rather than
to fit it from the experiments) and use this to calculate per-
frame RDCs that can then be averaged. These physical mod-
els can be tested against data for folded proteins, where the
alignment can be determined from experiment using an SVD
fitting procedure. Such tests suggest that the predicted align-
ments are accurate enough to be useful, in particular when
alignment is dominated by steric interactions between the
macromolecule and the alignment medium. Among the dif-
ferent methods for predicting alignment tensors, the PALES
software is probably themost commonly used [197]. While it
is possible to predict alignment for the full chain, sometimes
local alignment over short stretches of ca. 15 residues is used
instead [198].

RDCs have been used extensively to benchmark protein
force fields [29, 81, 184, 199], as they offer a number of ad-
vantages. In particular, they can be measured very precisely
[189], they are averaged over long time scales and thus re-
port on conformational ensembles [193], and they can be
measured for multiple bonds in both the backbone and side
chains [189]. Additionally, RDCs for atoms that are not di-
rectly bonded can be measured at long range, because the
RDC falls off with only the third power of the interatomic dis-
tance (Eq. 7). By contrast, the nuclear Overhauser effect (Sec-
tion 3.1.4) falls off with the sixth power of the interatomic dis-
tance.

Because themagnitudes of the RDCs depend on the align-
ment strength [200, 201], the quality of agreement between
experiments and simulations is typically evaluated in terms
of a normalized RMSD (the quality factor, Q [202]), with high-
resolution crystal structures typically having Q < 25% [188].

3.1.4 Nuclear Overhauser effect spectroscopy
General principles
The nuclear Overhauser effect (NOE) is the change in in-
tensity of the resonance peak of one nucleus that occurs
when the resonance of a nearby nucleus is saturated by
radio frequency irradiation. Saturation of a nucleus greatly
perturbs its magnetization away from its equilibrium value,
and the interaction between the magnetic dipoles of two
nuclei nearby in space allows the system to relax toward
equilibrium via a concerted flip of both nuclear spins. This
concerted flip is known as dipolar cross relaxation and re-
quires an exchange of energy between the two-spin system
and nearby atoms. In NMR spectroscopy, the environment
surrounding a system of spins is called the lattice. (However,
this term does not imply a repeating arrangement of atoms
related by translational symmetry as in a crystal lattice.)

Figure 2. Idealized NOESY spectrum. The one-dimensional spec-
trum displayed along the top and right contains peaks for four hy-
drogen nuclei, labeled ”A” through ”D”. Apart from the self-peaks
along the diagonal, there are NOE cross peaks between two pairs of
nuclei. The volumes of the cross peaks indicate aweakNOE between
A and C and a strong NOE between B and D nuclei. The lack of cross
peaks between A and D and between B and C suggests no significant
NOE between these pairs of nuclei.

Thus, dipolar cross relaxation involves coupling to the mo-
tions of the lattice. The NOE is a through-space, rather than
through-bond, effect that is typically detectable only when
the mean internuclear distance is less than 6Å.

NOEs for proteins are typically measured using a
two-dimensional nuclear Overhauser effect spectroscopy
(NOESY) experiment, in which one dimension corresponds
to the chemical shift of the saturated nucleus, δA, and the
second dimension corresponds to the chemical shift of the
observed nucleus, δB. The intensity of the NOE between
nuclei A and B is measured as the integral of the cross peak
located at (δA, δB) in the two-dimensional NOESY spectrum
(Fig. 2). This integral is proportional to the time elapsed
between the saturation and observation pulses, i.e., the
mixing time.

NOESY experiments for proteins report on the average,
or effective, distances between pairs of nuclei, where the av-
erages are taken over the mixing time of the NOESY experi-
ment, and the form of the average is determined by the time
scales of intramolecular vs. overall motions of the protein
[203, 204]. In the limit where intramolecular motions are
much slower than molecular tumbling, the effective distance
between nuclei A and B, RAB, takes the form
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Rslow
AB =

〈
1
R6AB

〉–1/6

(8)

In the limit where variations in the orientations of internu-
clear displacements are small and where intramolecular mo-
tions are much faster than molecular tumbling, the average
becomes

Rfast
AB =

〈
1
R3AB

〉–1/3

(9)

Appendix A provides additional information about the pre-
cisemeanings of these assumptions andhow they give rise to
the corresponding effective distances, andmore detailed dis-
cussions of this topic are available in the literature [203, 204].

The previous discussion has assumed that the cross peak
intensities in a NOESY experiment result purely from direct
dipolar cross relaxation between the saturated and observed
spins. However, observedNOESY intensities also include con-
tributions from indirect dipolar cross relaxation events medi-
ated by additional spins nearby in space. For example, after
saturation of spin A, the cross-peak intensity between spins
A and C will include not only a direct contribution but also an
indirect contribution due to dipolar cross relaxation between
spins A and B followed by dipolar cross relaxation between
spins B and C. This indirect relaxation, called spin diffusion,
can reduce the internuclear distances inferred from NOEs.
Although spin diffusion is non-negligible in most protein sys-
tems, it is slower than direct relaxation, so it contributes less
to NOESY spectra with shorter mixing times, making such ex-
periments more straightforward to interpret and simpler to
model with MD simulations.

Evaluation of MD simulations using NOESY
The literature describes many approaches for assessing the
accuracy of a protein ensemble against a NOESY experiment.
Most can be grouped into three broad categories, according
to the level of detail used in modeling the dependence of the
NOEs on intramolecular motions, as now discussed.

The first approach treats the dependence on intramolec-
ular motions implicitly by assigning the experimental NOESY
cross peak intensities to categories associated with upper
boundaries on the corresponding effective internuclear
distances—e.g., 2.5 Å for strong, 3.0 Å for medium, and
4.5Å for weak NOEs [205]. Appropriate ensemble-averaged
effective distances, i.e., Rslow

AB (Eq. 8) or Rfast
AB (Eq. 9), can be

computed from a simulation and compared to these upper
boundaries, and force fields can be assessed by counting
violations of these boundaries. The choice of which distance
average to use depends on assumptions about the time
scales of intramolecular motions relative to overall molecu-
lar tumbling. For typical globular proteins, time constants

for molecular tumbling are on the order of 10ns to 100ns,
and intramolecular motions are assumed to occur on faster
time scales, so that Rfast

AB is an appropriate choice of effective
distance. For short, unstructured peptides, time constants
for molecular tumbling are much faster, and intramolecular
motions are assumed to occur on slower time scales, so
that Rslow

AB is an appropriate choice of effective distance. For
intrinsically disordered proteins and for folded proteins
that undergo slow, large-scale conformational fluctuations,
it is likely that neither assumption is valid, and a different
approach for evaluating NOESY intensities should be used
(see below). Note that this first approach ignores the ef-
fects of spin diffusion and therefore is most appropriate
for comparison against NOESY spectra collected at short
mixing times. Sometimes experimental measurements are
reported only as upper boundaries on distances rather than
as direct NOESY intensities, in which case this approach is
the only one available. The experimental uncertainty in this
approach is mostly due to the discretization of themeasured
intensities into rough distance restraints, which should be
kept in mind when interpreting the number and size of any
violations between simulated and experimental effective
distances.

In the second approach, effective distances are calculated
from the experimental NOESY cross peak intensities by as-
suming that the cross peak intensities VAB are proportional
to the reciprocal sixth power of the effective distance.

Reff
AB =

(
κ

VAB

)1/6
(10)

Here, the value of κ is determined from the cross peak in-
tensities for nuclei with known, rigidly constrained distances,
such as vicinal protons in aromatic rings. Experimental effec-
tive distances for mobile proton pairs can be computed from
the derived value of the κ and the measured cross peak in-
tensities of these pairs. Then, an ensemble-averaged effec-
tive distance is computed from an MD trajectory, and force
fields can be assessed using an RMSE between the effective
distances calculated from the simulations and from the ex-
perimental cross peak intensities. The choice of whether to
use Rslow

AB or Rfast
AB to calculate the effective distances from the

simulations relies on the same considerations as those de-
scribed in the previous approach. This approach, too, is less
appropriate for intrinsically disordered proteins and proteins
that undergo large conformational changes, as well as for
NOESY spectra collected at long mixing times, as these can
have non-negligible contributions from spin diffusion.

The third class of approaches uses more detailed mod-
els for the dependence of the NOE on intramolecular mo-
tions [204, 206] and can be applied to compute the dipolar
cross relaxation rates and NOESY cross peak intensities di-
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rectly (Eq. 34 and Appendix B). Such models may also at-
tempt to account for spin diffusion or for anisotropic molec-
ular tumbling.

In all three approaches, the experimental study may not
distinguish between individual hydrogen atoms, either be-
cause they are chemically indistinguishable (e.g., the three
protons of a methyl group) or because stereospecific hydro-
gen atoms could not be assigned (e.g. the β-hydrogens in
an amino acid side chain). These cases may either be omit-
ted from the evaluation or addressed by pseudoatom correc-
tions such as the ”center average” approach [207, 208].

3.1.5 Spin relaxation
General principles
A radiofrequency pulse at a nucleus’s resonant frequency
tips the spin away from the axis of the external field around
which it is precessing, increasing the amplitude of its pre-
cession. It also makes the spins of multiple nuclei precess
coherently. Spin relaxation is the decay of a nucleus’s spin
magnetization back to its equilibrium distribution following
such a pulse. This process is typically characterized by
two independent exponential decay processes. Spin-lattice
relaxation, or T1 relaxation, is the decay of the component
of the nuclear spin magnetization parallel to the external
magnetic field, conventionally defined as the z axis. This
decay is caused by the interaction of the aligned spins
with their surroundings (often called the lattice despite not
being ordered), i.e., an exchange of energy between the
spin and the lattice. This longitudinal component of the
magnetization, Mz(t), decays according to

Mz(t) = Mz,eq – [Mz,eq –Mz(0)] exp
(
– t
T1

)
(11)

where Mz,eq is the longitudinal component of the magnetiza-
tion at thermal equilibrium, time t = 0 corresponds to the end
of the pulse, and T1 is the decay constant for the spin-lattice
relaxation. Spin-spin relaxation, or T2 relaxation, is the decay
of the net magnetization transverse to the external magnetic
field due to dwindling coherence of the phases of the spins
of individual nuclei. The transverse component of the mag-
netization, Mxy(t), decays according to

Mxy(t) = Mxy(0) exp
(
– t
T2

)
(12)

where T2 is the decay constant for the spin-spin relaxation.
For most systems, spin-spin relaxation is faster than spin-
lattice relaxation; i.e., T1 > T2. These decay constants can
be measured for NMR-active isotopes in proteins, typically
15N in labeled backbone amides or 13C- and 2H-labeled
side chains. Although protein force fields are usually bench-
marked against the spin relaxation times of backbone nuclei,
it is also possible to use side chain data [209], though this

is generated less often than backbone data. In addition,
heteronuclear NOE (hetNOE) relaxation, which is typically
sensitive to fast motions, can be measured.

The Redfield equations [210] (see Appendix B) demon-
strate that spin relaxation times are related to molecular
dynamics via rotational correlation functions of bonds in
a complex and magnetic field-dependent manner whose
intuitive interpretation is often not straightforward. To
simplify this, spin relaxation analyses [211–215] typically
employ the Lipari-Szabo or model-free approach [216, 217],
where rotations of bonds are assumed to be dominated
by two independent types of motion: overall molecular
tumbling and intramolecular motions in the molecular
frame. This analysis gives the time scales of protein overall
and intramolecular motions, as well as order parameters,
S2, characterizing the orientational freedom of bond vectors
in the protein frame of reference. These order parameters
range between 0 and 1 [217], where 0 implies free, isotropic
rotation of the bond vector within the molecular frame
of reference, and 1 implies a complete absence of such
freedom. Experimental values for the order parameters can
be derived for each residue by fitting the value of the order
parameter and the time constant for internal motion, along
with one additional time constant for molecular tumbling, to
the observed spin relaxation rates and NOE enhancements
for all residues. The time constant for molecular tumbling
can also be separately fit to the T1/T2 ratios for all residues
in the protein, which are independent of the residue-specific
order parameters and time constants for internal motion as
long as the internal motions are fast relative to molecular
tumbling, an assumption that is typically valid for globular
proteins [152].

Alternatively, instead of estimating both T1 and T2 values
from order parameters using the Lipari-Szabo model, as just
discussed, onemay estimate T2 from a linear transformation
of the effective correlation time for molecular tumbling, ob-
tained from a multi-exponential decay describing the multi-
ple time scales for protein backbone rotationalmotions [218].
This can facilitate rapid interpretation of molecular dynam-
ics from spin relaxation times and their comparison with MD
simulations.

Evaluation of MD simulations using spin relaxation
Order parameters and time scales of internal motions
computed from MD simulations of folded proteins have
often been compared with values extracted from experi-
ments using the Lipari-Szabo model [211–215, 219, 220].
It is worth noting that this approach cannot be used for
proteins with disordered regions because their overall
motions cannot be uniquely defined, and their rotational
dynamics may not be modeled by a single time scale as
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assumed in the Lipari-Szabo model. Nevertheless, spin
relaxation times for such systems can be directly calculated
from MD simulations by substituting Fourier transforma-
tions of multiple rotational correlation functions to the
Redfield equations and then compared with experiments
[152, 221–223]. Several codes with slightly different im-
plementation details and varying levels of documentation
are available for this: https://github.com/zharmad/SpinRelax
[221], https://github.com/ohsOllila/ProteinDynamics [222],
and https://github.com/nencini/NMR_FF_tools/blob/master/
relaxation_times/RelaxationTimes.ipynb [224]. Additionally,
https://github.com/fahoffmann/MethylRelax [223] provides
code for the calculation of spin relaxation rates for methyl
groups in protein side chains.

Sufficiently long simulations [225] can reproduce exper-
imental spin relaxation times to good accuracy without any
further corrections [152], given that the simulations use awa-
ter model that gives an accurate viscosity of water. In par-
ticular, the TIP3P water model [226] underestimates the vis-
cosity significantly and therefore leads to unrealistically short
time constants for overall protein rotation (tumbling) [227].
For simulations that use a water model that gives an inaccu-
rate viscosity, overall motion is usually removed mathemat-
ically before computing internal relaxation rates [209, 221,
222, 227–229].

Comparisons of simulated spin relaxation times to exper-
iments can be used to evaluate the accuracy of both protein
dynamics and the conformational ensembles of proteins
with long disordered regions [152, 230], multi-domain pro-
teins [231], and peptides in micelles [224]. Spin relaxation
rates are particularly informative for such systems because
they report on dynamics, whereas other observables—such
as chemical shifts and scalar couplings—may only report
time-averaged properties [152]. For fully folded proteins,
comparisons of spin relaxation times with experiment can
be used to evaluate the accuracy of the computed rotational
diffusion rates [222].

The experimental errors are typically between 0.01 s and
0.1 s for T1 and T2 values and, when using the full Redfield
equations (Appendix B), between 0.05 and 0.1 for the back-
bone amide heteronuclear NOE values [232]. These experi-
mental uncertainties are smaller than the usual statistical un-
certainty in MD simulations [231].

3.1.6 Paramagnetic relaxation enhancement
General principles
Paramagnetic relaxation enhancement (PRE) is an increase
in the NMR relaxation rate of a nuclear spin due to its dipolar
interactions with unpaired electrons at a paramagnetic
site; i.e., at an atom with an unpaired electron [233, 234].
Although the dipolar cross relaxation that causes PRE is

essentially the same as that which causes NOE, PRE ranges
over much longer distances, as far as 25Å, because the
magnetic moment of an unpaired electron is much larger
than that of a nucleus. Somemetal atoms inmetalloproteins
are paramagnetic and generate measurable PREs. For other
proteins, paramagnetic sites can be artificially introduced
by using chemical reactions to attach extrinsic labels, called
spin labels. This is usually done by engineering proteins to
have just a single, reactive cysteine residue, which can then
be reacted with a nitroxide-containing compound—such
as MTSL—or a chelating agent carrying a paramagnetic
metal—such as an EDTA derivative. Although it is possible
to measure the PRE for longitudinal NMR relaxation rates
(R1 = T–11 ), most applications focus on transverse relaxation
rates (R2 = T–12 ), and these will be the focus of this section.
PRE depends on both the distribution of distances and
the time scales of motion of the protein, along with the
location and dynamics of the spin label. The strength, range,
and strong dependence on distance make PRE particularly
suitable to detect and quantify transient and low-probability
interactions.

In a typical PRE experiment, onemeasures the transverse
relaxation rates of various groups in both the spin-labeled
(paramagnetic) protein and in the same protein without
the spin label (the diamagnetic protein). The PRE for nuclei
across the protein then is obtained from the difference
between the spin relaxations of these two measurements.
Alternatively, because the PRE leads to line broadening, one
may estimate the PRE from the ratio of the intensities (peak
heights) in, e.g., heteronuclear single quantum correlation
spectra of the paramagnetic and diamagnetic samples.
However, although this has commonly been done and may
lead to useful insights, the analysis of such data comes with
additional uncertainty and assumptions so that one should,
if possible, measure the PRE via relaxation rates [234]. When
a nitroxide spin label is used, the diamagnetic protein can
be generated simply by reducing the nitroxide with ascorbic
acid. It is possible to measure PREs of various nuclei and
chemical groups, but they are most commonly measured at
backbone amides.

Evaluation of MD simulations using PRE
Like NOEs (Section 3.1.4) and spin relaxation rates (Section
3.1.5), PREs depend on the intramolecular motions of pro-
teins in a complexmanner (see Appendix C), and approaches
used to handle intramolecular motions for NOEs and spin re-
laxation rates are applicable to PREs as well. Specifically, the
PRE can be interpreted as providing a probe of the ensemble-
averaged distances between probed spins and the spin label.
An effective ensemble-averaged effective distance calculated
from an MD trajectory, such as Rslow

AB (Eq. 8), can be com-
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pared to distances calculated from experimental PREs. Alter-
natively, a model for the intramolecular motion of the pro-
tein, such as the Lipari-Szabo approach, can be used to com-
pare order parameters or PREs directly to the corresponding
experimental values.

The PRE has been used most extensively to benchmark
MD simulations of disordered proteins with weak and/or
transient interactions [81, 235], but it can also be used to
probe transient interactions between folded proteins and
between proteins and nucleic acids, and could thus be used
to benchmark simulations of such systems. PREs have also
been used to parameterize coarse-grained force fields for
disordered proteins [236, 237]. Often, PRE experiments
involve measurements on proteins labeled at multiple sites,
one at a time, to get a global view of the structural dynamics
of a protein. Each experiment probes the distance between
the spin label site and all backbone amide protons. Thus,
one is faced with the challenge of assessing a simulation of
a protein based on all these measurements.

When calculating PREs fromMD simulations and compar-
ing them to spin label experiments, one must decide how to
model the spin labels. One approach is to simulate each vari-
ant of the protein with its covalently linked spin label. This
requires generating force field parameters for the covalently
modified protein and often also requires mutating the se-
quence to exclude/include cysteine residues tomatch the ex-
perimental protein constructs. One must then repeat the
simulation for each spin label site of interest. An easier al-
ternative is to simulate the unlabeled wild-type protein and
calculate distances between protein atoms as proxies for the
distances between the spin label and amide protons. For ex-
ample, one may use an atom in the side chain of the refer-
ence (wild-type) sequence as a proxy for the location of the
unpaired electron. However, this approach risksmissing gen-
uine effects of the spin labels on the protein’s dynamics. A
compromise between these two extremes is to perform sim-
ulations of the wild-type protein and then model the spin la-
bel onto this simulation using a rotamer library developed
to describe the structural preferences of the label. Such ro-
tamer libraries are available for the commonly used MTSL
spin label [238]. For applications to large MD simulations,
placing the spin labels and sampling the rotamers may be
achieved by tools such as Rotamer-ConvolveMD in the MD-
Analysis package [239, 240] and DEER-PREdict [241], with the
latter also implementing calculations of the PREs from the
simulations. Which of these approaches to choose depends
in part on the desired accuracy and whether there is experi-
mental evidence that the spin label itself introduces a change
in the conformational ensemble.

While PREs can be measured relatively accurately, a num-
ber of issues complicate their use in assessing force field

accuracies. First, unless the spin label is modeled explicitly,
there may be uncertainty regarding the degree to which the
spin label affects the protein [241, 242]. Second, PREs are
often probed indirectly via measurements of intensity ratios,
limiting accuracy and interoperability [234]. Finally, unless
the time scales of motions are calculated directly from the
simulations [243], calculations of PREs require either esti-
mating [241] or fitting [237] the time scales, approaches that
introduce uncertainty. Due to these complications, the root
mean square error between simulated and experimental
values (PREs directly or, indirectly, effective distances or or-
der parameters) should be compared between simulations
of the same protein with different force fields but should
not be compared between simulations of different proteins.

3.2 NMR datasets
ManyNMRdatasets for proteins andpeptides are available in
the literature and in the Biological Magnetic Resonance Bank
(BMRB) [146, 147]. We focus here on datasets, listed in Ta-
ble 1, that appear particularly useful for benchmarking force
field parameters because they largely meet the following cri-
teria: 1) the data are available in a machine-readable for-
mat; 2) estimates of experimental uncertainty are included;
3) a diversity of structural motifs are present, including dif-
ferent secondary and tertiary structure elements and disor-
dered regions; 4) the proteins are small enough that rela-
tively short simulations suffice to provide well-converged es-
timates of the NMR observables. Note that many NMR ob-
servables for proteins were collected under low pH condi-
tions, so it is essential to assign protonation states that are
consistent with the environment of the experimental mea-
surements (see Section 5.1). This can complicate force field
benchmarks, because some force fieldsmay not have param-
eters for protomers of the standard amino acids, especially
for a protonated C terminus.

3.2.1 Beauchamp short peptides and ubiquitin
Beauchamp et al. [44] curated from the literature and
Biological Magnetic Resonance Bank 524 NMR chemical
shifts and scalar J-couplings for 19 capped 1-mers of the
form Ace-X-Nme, where X are non-proline amino acids; 11
uncapped 3-mers; tetraalanine; and the protein ubiquitin.
The short peptides in this dataset provide an opportunity to
assess the backbone preferences of amino acid residues in
the absence of a defined secondary structure. It is important
for a force field to capture these preferences in order to ac-
curately predict the conformational distributions of flexible
loops in folded proteins and of unfolded and intrinsically
disordered proteins.
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3.2.2 Designed β-hairpins and Trp-cage miniproteins
Many groups have used NMR to characterize the solution
structure, stability, and dynamics of designed beta-hairpin
sequences [45–65] and miniproteins [66–72] in a variety
of solution conditions. One series of studies of Trp-cage
miniprotein sequences [73–78] includes NOE restraints for
four Trp-cages (PDB entries 1L2Y [73], 2JOF [75], 2M7D
[77], 6D37 [78]), folding rates measured by NMR resonance
line-broadening due to folded/unfolded-state exchange
[60, 244], and temperature-dependent chemical shift devia-
tions (CSDs) for dozens of related sequences measured in
the same solution conditions. These measurements offer a
high-quality benchmark set that reports on how mutations
perturb folding. Molecular simulations are now routinely
able to access themicrosecond time scales required tomake
accurate comparisons with these observables in only days
of wall time.

3.2.3 Stroet folded proteins
Stroet et al. curated a dataset of 52 high-resolution protein
structures, ranging in size from 17 to 326 residues [79]. All
of the proteins are monomeric in solution, and none contain
ligands or co-factors. 13 proteinmodels, ranging in size from
17 to 129 residues, were derived fromNMR experiments. For
nine of these, NMRobservables—including upper bounds for
interatomic distances derived from NOE data, 3J-couplings,
and RDCs—are available from either the PDB or the Biolog-
ical Magnetic Resonance Data Bank (BMRB) [146, 147, 232].
This dataset, which is available from the Australasian Com-
putational and Simulation Commons (ACSC) Molecular Simu-
lation Data Repository [245] at https://molecular-dynamics.atb.
uq.edu.au/collection/protein-force-field-validation-set, was used
to validate backbone torsional parameters [34] and to study
the impact of nonbonded cutoff schemes on experimental
observables [246].

In preparing the dataset, Stroet et al. curated the NOESY
studies that provide interatomic distances derived from
NOESY intensities but not the intensities themselves. Any
pseudoatom corrections included in the experimental data
were first removed, and then the pseudoatom corrections
proposed by Wüthrich [247] were applied. Pseudoatom cor-
rections were applied in this way to six of the nine proteins
with NOE distance restraints. For two of the remaining three
proteins, no information on any pseudoatom corrections
to the NOE-derived upper bounds could be found, and
so the NOE restraints reported for these proteins may be
less rigorous. For the third, mercury binding protein from
Shigella flexneri (PDB ID 1AFI), a large number of violations in
NOEs assigned to Phe47 were observed in initial simulations.
Inspection of the structure and the violations points to
wrongly assigned explicit phenyl ring hydrogens Hε1/2 and

Hδ1/2. Replacing the assignment of these protons on the
symmetrical phenyl ring by pseudoatoms HE* and HD*,
and adding the appropriate pseudoatom corrections [247],
removed all violations above 0.5Å [79].

3.2.4 Mao folded proteins
This is a collection of 41 folded proteins for which both X-
ray structures and NMR data, comprising backbone chemi-
cal shifts and NOESY intensities, have been measured by the
Northeast Structural Genomic Consortium [80]. These data
have been used to assess the accuracy of NMR structures, X-
ray structures, and Rosetta refinements [80], and to compare
the accuracy of MD simulations run with various force fields
[81, 248].

3.2.5 Robustelli folded and disordered proteins
Robustelli, Lindorff-Larsen, and co-workers assembled a
dataset (https://github.com/paulrobustelli/Force-Fields) that
spans 21 proteins and peptides with over 9,000 experimen-
tal data points and probes the ability of a protein force field
to simultaneously describe the properties of folded pro-
teins, weakly structured peptides, and disordered proteins
with a range of residual secondary structure propensities
[29, 81, 184, 235, 248].

The dataset contains four fully folded proteins (ubiquitin,
GB3, hen egg white lysozyme (HEWL), and bovine pancreatic
trypsin inhibitor) with extensive NMR data, including back-
bone and side chain J-couplings, RDCs, and backbone and
side chain spin relaxation order parameters. It also includes
calmodulin and the bZip domain of the GCN4 transcription
factor, both of which contain folded and flexible components.
Calmodulin, which comprises two folded domains connected
by a flexible linker, probes the ability of a force field to si-
multaneously describe the flexibility of the linker region, the
stability of folded domains, and the propensity of the folded
domains to associate. The NMR data for calmodulin com-
prise chemical shifts and RDCs. The bZip domain of theGCN4
transcription factor is a partially disordered dimer with an
ordered, helical, coiled-coil dimerization domain, for which
NMR chemical shifts and backbone amide spin-relaxation pa-
rameters are available.

The dataset also includes nine proteins that are dis-
ordered under physiological conditions and for which
extensive sets of NMR data are available. These test the abil-
ity of a force field to accurately describe the dimensions and
secondary structure propensities of intrinsically disordered
proteins. The proteins range in size from 40 to 140 amino
acids, which was important, as a number of force fields that
produced reasonable dimensions for proteins containing
<70 amino acids produced conformations that were sub-
stantially over-collapsed for longer sequences. The available
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NMR data for these disordered proteins include chemical
shifts, RDCs, backbone J-couplings, and PREs. Scalar cou-
plings of the disordered Ala5 peptide were also included.
Code to calculate NMR and SAXS data for five IDPs in this
benchmark (Aβ40, drkN SH3, ACTR, PaaA2 and α-synuclein)
is included in a recent manuscript describing a maximum
entropy reweighting approach to calculate conformational
ensembles of IDPs from experimental data [249] (https:
//github.com/paulrobustelli/Borthakur_MaxEnt_IDPs_2024).

The Robustelli dataset is enriched by a number of non-
NMR data, including radii of gyration obtained by various
experimental methods and data on the temperature-
dependent stability of fast-folding proteins. The dataset
has also been expanded [248] to include the free ener-
gies of association of 14 protein-protein complexes, the
osmotic coefficients of 18 organic and inorganic salts, the
position of the first peak of the radial distribution func-
tions of seven ion-water and ion-ion pairs, comparisons
of Ramachandran distributions of blocked amino-acids in
water, Ramachandran distributions obtained from X-ray coil
libraries, Lifson-Roig helix extension parameters for the 20
amino acids (estimated from NMR studies of Ace-(AAXAA)3-
Nme peptides), the folding free energies of mutants of 22
mutants of Trp-cage, the folding enthalpies of 10 fast-folding
proteins, the Kirkwood-Buff integrals of ethanol water-
mixtures, and the melting curves of the Trpzip1 and GB1
β-hairpin-forming peptides.

3.2.6 Spin relaxation datasets
Spin relaxation data have been reported for a large number
of proteins; see, for example, a comprehensive review of
spin relaxation measurements published before 2006 [82].
Furthermore, the BMRB contains spin relaxation data for ap-
proximately 350 proteins [146, 147, 232]. A curated dataset
of BMRB spin relaxation measurements for 133 proteins,
which were used to train the Dyna-1 deep learning model
for predicting slow dynamics in proteins [250], is available
from https://github.com/WaymentSteeleLab/Dyna-1#datasets.
Althoughmost reported spin relaxation datasets have not so
far been analyzed in conjunction with molecular simulations,
there are some useful examples of such analyses.

First, the membrane-bound, bacterial TonB proteins
possess a long, disordered region that links their C-terminal
domain to their transmembrane N-terminus. Spin relaxation
times have been measured for backbone N-H bonds in the
C-terminal domain with varying linker lengths (HpTonB194-
285, HpTonB179-285, and HpTonB36-285) [84], and these
data can be used to evaluate the conformational ensembles
predicted by MD simulations. In one such study [152], sim-
ulations with the Amber ff03ws force field reproduced the
experimental spin relaxation times of partially disordered

fragments of TonB as well as Engrailed 2 (see below), while
CHARMM36m and Amber ff99-ILDN gave less accurate
results, apparently because they yielded overly collapsed
conformational ensembles. Interestingly, however, the
three force fields gave similar accuracy for chemical shifts,
presumably because of degeneracy in chemical shifts with
respect to the structural features important for describing
this ensemble. Second, backbone N-H spin relaxation data
at multiple magnetic fields are available for the partially
disordered 143–259 region of the Engrailed 2 transcription
factor [85]. This region is highly conserved and is involved
in the binding of transcriptional regulators. Simulations
with the Amber ff03ws force field yielded good agreement
with the experimental data, except for serine and aspartate
residues [152].

Backbone N-H spin relaxation times have also been used
to find the best ensembles amongdiverse simulation data for
four differentmulti-domain proteins using the quality evalua-
tion based simulation selection (QEBSS) approach [231], and
to characterize dynamics of six different peptide-micelle sys-
tems in conjunction with MD simulations [224].

In addition, spin relaxation times for side chain methyls,
rather than backbone N-H groups, have been reported for
T4 lysozyme [251], which exhibits anisotropic tumbling in
solution. Modeling the anisotropic tumbling in the calcu-
lation of spin relaxation observables from MD simulations
was found to improve the agreement with experimental
observables. This dataset of side chain relaxation rates was
also used to validate the ABSURDer reweighting approach
for calculating relaxation rates from MD simulations [252].

3.2.7 NMR-derived salt bridge stabilities
In some cases, NMR data can be used to measure secondary
properties, which can in turn be compared with simulations.
For example, the thermodynamic stability of weak, solvent-
exposed salt bridges can be assessed by monitoring NMR
chemical shifts as a function of pH. One such study exam-
ined three potential salt bridges in the context of a folded
protein, the B1 domain of protein G (GB1) [253]. These in-
volve lysine-carboxylate ionic interactions and were identi-
fied from crystal structures. The stabilities of these potential
salt bridgeswere assessed via 15Nand 1H chemical shifts and
the hydrogen-deuterium exchange rates of the lysine ammo-
nium group during titration of the carboxylates [86]. The
NMRdata indicate that two of the salt bridges are not formed
in solution, while the third is only weakly formed. Interest-
ingly, most force fields tested overestimated the stability of
the salt bridges [253], a result also reported by previous stud-
ies [185, 254] looking at the association constants of oppo-
sitely charged amino acids in water, where the experimental
data were obtained by potentiometric titration rather than
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NMR. Here, the results were significantly improved by atomic
charge derivation strategies that implicitly incorporate sol-
vent polarization [255] and by the use of themore expensive,
polarizable CHARMM Drude-2013 [256] and AMOEBA force
fields [257].

4 Room-temperature protein
crystallography

The earliest protein crystal structures were determined by
X-ray diffraction for specimens at or near room temperature
[258]. Later, methods of working with protein crystals at
low temperature were widely adopted for their practical
advantages, such as slowed radiation damage of the crystal
specimen [259, 260]. More recently, however, there has
been a revival of interest in room temperature protein
crystallography because it gives insight into molecular
motions that are quenched at cryogenic temperatures
[259–262]. At cryogenic temperatures, there is little motion
to simulate, and it is also not clear that the conformational
variability observed at cryogenic temperatures corresponds
to a well-defined thermodynamic ensemble at any particular
temperature [262, 263]. In contrast, the conformational
variability observed by RT crystallography is more clearly
attributable to room temperature thermal motions. Thus,
although most crystallographic data available in the Protein
Data Bank (PDB) were measured at cryogenic temperatures,
the PDB contains a growing number of room temperature
structures. Neutron diffraction crystallography (Section
4.1.5), which also can be carried out at room temperature,
goes beyond X-ray crystallography because it can resolve the
positions of hydrogen atoms in protein structures. However,
there are not many neutron diffraction structures in the
PDB, as there are not many suitable neutron sources where
these studies can be done, and the method requires larger
crystals.

Water typically occupies about 50% of a protein crystal’s
volume [264], so crystallized proteins are usually quite well-
solvated. Nonetheless, the conformational distribution of a
crystallized protein is likely to differ from that of the same
protein in solution due to protein-protein contacts, pertur-
bations of water structure, and the presence of co-solutes
added to facilitate crystallization. Therefore, when one uses
crystallographic data to benchmark molecular simulations,
one should simulate the crystal rather than the protein in
solution. Crystal simulations with periodic boundary condi-
tions can in principle be used to simulate a single unit cell,
but this does not allow variations between adjacent lattice
positions. Therefore, it is preferable to simulate a supercell
comprising multiple unit cells, which can sample such lattice
variations (Fig. 3). This requirement adds complexity and

Figure 3. A 3× 2× 2 supercell containing 12 independent copies of
hen egg white lysozyme (4LZT [90]), each colored differently from its
neighbors. Black lines represent cell boundaries of the triclinic unit
cell.

can lead to larger and hence slower simulations than those
used with NMR benchmark data, depending on whether the
size of the supercell exceeds the size of the simulation box
for the solvated system. At the same time, the extra copies
of the protein in supercell simulations often can be included
in computing statistical averages, enabling some analyses
to be performed using shorter simulation durations than
for conventional solution simulations. Note, however, that
supercell simulations include periodic boundaries with
exact translational symmetries not present in experimental
crystals, and this difference in periodicity can complicate
the prediction of some crystallographic observables, such as
Bragg diffraction. Different proteins, and even different crys-
tal structures of the same protein, have different levels and
characters of both conformational variation and experimen-
tal error. Therefore, much as for NMR benchmarking, force
fields should be compared against a single crystallographic
dataset, rather than attempting to compare force fields
based on benchmarks against different crystal structures.
Methods of simulating protein crystals have been discussed
in recent reviews [265, 266].

This section reviews crystallographic observables that are
relatively well developed for use in benchmarking protein
simulations, touches on the additional topic of diffuse scat-
tering, and lists crystallographic datasets that are well-suited
for benchmarking.
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4.1 Crystallographic observables
4.1.1 Bragg diffraction data
General principles
X-ray scattering from an ideal crystal would be focused into
sharp spots on the detector, located at positions that are
generally called the Bragg positions, and the intensities at
these positions are sensitive to the time- and space-average
of the electron density. Diffuse scattering, which reports
on correlated motions and crystalline disorder [267], is
discussed in Section 4.1.4. The Bragg intensities are related
to the mean unit-cell electron density through the complex
structure factors, i.e., the Fourier transform of the unit-cell
electron density distribution. In particular, the Bragg inten-
sities are proportional to the squared amplitudes of the
structure factors. The phases are also needed to compute
the electron density, and in the absence of an anomalous
dispersion signal from which experimental phases can be
obtained, the phases must be obtained from an atomic
model. Therefore, the electron density is not typically an
”experimental observable” in the usual sense. Still, for a
well-refined model, with good resolution and an R-factor
below 15% or so, it is common to refer to the ”observed
electron density”.

Evaluation of MD simulations using Bragg diffraction
data
The simplest way to assess the accuracy of a simulation of
a protein crystal is to compare the average structure from
the simulation to the crystallographic model structure avail-
able in the Protein Data Bank (PDB) [268–270]. This intuitive
and quick comparison may be useful when there are large
differences between two force fields of interest. In addition,
the focus on a single structure may help to identify specific
problems in the force field, such as insufficient stability of
alpha-helices or side chains preferring uncommon rotamers,
and thus can yield feedback to improve it. To assess protein
backbone agreement, RMSD of Cα atoms or of all backbone
heavy atoms can be used. To assess protein side chain agree-
ment, RMSD of side chain atoms, dihedral-angle agreement
within an angular threshold, or match between defined ro-
tamers [271, 272], can be used. Note that a rigorous mea-
sure of RMSD must account for symmetries; for example, a
180◦ rotation of the χ2 angle of a phenylalanine in themodel
should not alter the computed RMSD. The possibility of alter-
nate conformations (Section 4.1.3) should also be factored
in. While this general approach is widely used and simple to
implement, the structural models used as the basis for the
comparison are typically derived by refinement informed by
an empirical force field. Therefore, comparisons against the
structural model risk assessing, at least in part, the agree-

ment of the force field of interest with the force field used
during refinement, rather than agreement with experimen-
tal data. For example, an active site proline in ligand-bound
triosephosphate isomerase adopts a planar ring conforma-
tion, but structural models refined using force fields place
the proline ring in a puckered conformation that is inconsis-
tent with the experimental electron density [273].

A second approach is to compute the mean electron
density from the simulation [274–277] and compare it
with the crystallographic electron density. This avoids the
intermediary of a structural model inferred from the crystal-
lographic density. Note that the observed electron density
is averaged over time and over many unit cells of the crystal
and hence reflects disorder in the experimental system.
Because the density is often sharply peaked around atomic
positions, standard methods of comparing density, such
as the Pearson correlation, can be more sensitive to small,
local differences than is desired for assessing the relative
accuracy between force fields, although these issues may be
addressed by approaches such as local model-based map
alignments [278]. Existing crystallographic software, such as
EDSTATS in CCP4 [276] and phenix.real_space_correlation
in PHENIX [279], can be used to compare electron density
maps.

Other methods of comparing simulations to crystallo-
graphic data are also possible. For example, one could
compute the mean electron density from the simulation
using mdv2map in AmberTools with CCP4 [276, 277] or xtraj
in LUNUS with CCBTX [274, 275], use crystallographic soft-
ware to refine an atomic model into this density, and then
use structural metrics such as atomic RMSD to compare this
model with the experimental structure model [266]. Alterna-
tively, one could directly compare computed and measured
Bragg intensities. This properly takes care of disorder but
can be more difficult to interpret, as modest deviations (by
an RMSD less than 0.5Å) of the protein away from the ”cor-
rect” structure can greatly reduce the real-space correlations
between computed and experimental diffraction intensities
[280]. In such cases, other measures of accuracy than
correlation may be more useful. One may also focus on the
accuracy of protein-protein contacts at interfaces, as these
depend on non-covalent and solvent-mediated interactions
that are important to get correct. Most crystal contact anal-
ysis methods, such as the PISA software [281], use a single
average structure as input, so it is difficult to account directly
for disorder. As with the comparison of average protein
structures discussed above, this sort of comparison may
be most useful when there are relatively large differences
between the results from different proposed force fields.

21 of 47 https://doi.org/10.33011/livecoms.6.1.3871
Living J. Comp. Mol. Sci. 2025, 6(1), 3871

https://doi.org/10.33011/livecoms.6.1.3871


A LiveCoMS Perpetual Review

4.1.2 Debye-Waller factors (B-factors)
General principles
The Debye-Waller factor of an atom, also known as its B-
factor or temperature factor, is closely related to the atom’s
fluctuations about its modeled position. B-factors are, in
principle at least, related to the mean square displacement
of the atom,

〈∣∣u⃗∣∣2〉, by the equation
B = 8

3
π2
〈∣∣u⃗∣∣2〉 = 8π2 〈u2s〉 (13)

where us = u⃗·⃗s∣∣⃗s∣∣ is the projection of the displacement vector

u⃗ onto the direction of the scattering vector s⃗. The statistic〈
u2s
〉
is sometimes referred to as the isotropic mean square

displacement [282]. However, B-factors can also have con-
tributions from various sources of error and are sometimes
viewed as ”slop factors” that absorb other errors in themodel
to improve the fit to the diffraction data. They may result
from incorrect assignments of the identities of atoms of sim-
ilar atomic number, i.e., K vs. Ca, and may also reflect, in a
nonspecific manner, incorrect modeling of side chains, alter-
nate conformations, and disordered regions. Debates con-
tinue between crystallographers about whether a region that
exhibits signs of disorder should be left unmodeled,modeled
with zero occupancy, or modeled with B-factors allowed to
refine to high values; as a result, their meaning can vary be-
tween different crystal structures. However, when derived
fromwell-validated structuralmodels [283] that aremodeled
correctly and carefully interpreted, they provide a meaning-
ful measure of the mobility of atoms within a protein struc-
ture. For structures with resolutions better than 1.5Å, it is
often appropriate to refine anisotropic B-factors, such that
each atom is assigned a tensor of six parameters that define
a three-dimensional Gaussian distribution of atomic fluctua-
tions. A more detailed hierarchical model—which partitions
the total disorder, normally assigned to atomic B-factors, into
a series of contributions across length scales—was recently
developed [284] and applied to ensemble refinement [285]
to produce structural models with lower R-factors.

Evaluation of MD simulations using Debye-Waller
factors
Given a simulation of a protein crystal, it is straightforward
to compute the mean square displacement

〈∣∣u⃗∣∣2〉 of each
atom from its mean position and thus obtain computed
B-factors; a modest amount of additional complexity is
involved in computing anisotropic B-factors. Alternatively,
one may, again, refine a structural model into the electron
density computed from the simulation and compare the re-
sulting simulated B-factors with the experimental B-factors.
Depending on the software used for refinement, constant
offsets may be applied to reported B-factors using methods

that do not distinguish contributions frommolecular motion
from other contributions [279]. Constant offsets are often
ignored in B-factor profile comparisons by using, e.g., a
Pearson correlation to assess the agreement. Nevertheless,
it is sometimes possible to account even for the constant
offset using MD simulations [280].

4.1.3 Alternate conformations
General principles
In contrast to B-factors, which in principle describe fluctu-
ations within a local energy well, alternate conformations
explicitly describe jumps between discrete conformational
states in separate local energy wells. For example, alternate
conformations—also known as alternative conformations,
alt confs, alternate locations, or altlocs—can be used to
model amino acid side chains that switch between different
rotamer [271, 272] conformations. Alternate conformations
are a promising avenue for comparison to and improvement
of simulations. In a protein structure file (e.g., a PDB file),
an alternate conformation is given as an additional set of
coordinates for a group of atoms (often a residue or series
of residues) and marked with a single-character identifier
(A, B, C, etc.) that is unique within the file. Each alternate
conformation is also assigned a partial occupancy (i.e.,
probability) from 0 to 1 that is determined by the crystallo-
graphic refinement. For covalently bound atoms, like those
of proteins, the occupancies of all alternate conformations
for a given atom typically sum to one. For molecules that
are not covalently bound to the protein, such as ligands
and water molecules, the occupancies may sum to less
than one. A crystal structure model that contains alternate
conformations is termed a multiconformer model.

Alternate conformations are often left unmodeled in crys-
tal structure models even when they are evident in the elec-
tron density maps [286]. Such missing alternate conforma-
tions can bemodeled in an automated and unbiasedmanner
with tools such as PanDDA [278] and qFit [287, 288], and MD
simulations of protein crystals can be used to find alternate
conformations that are missed by such automated methods
[266]. Alternate conformations are significantly more preva-
lent at RT than at cryogenic temperatures (cryo) [289], and
some alternate conformations that are observed only at RT
and not at cryo are critical to biological function [261] (see
Section 4.2.4) and can modulate ligand binding in important
ways [263]. Thus, RT crystallography can reveal biologically
relevant conformational heterogeneity.

When different parts of a biomolecule have alternate
conformations, these conformations may not be mutually
independent. For example, a rearrangement of one part of a
protein might restrict which conformations its neighbors can
adopt. However, the RCSB PDB format for crystal structure
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models does not provide a mechanism for specifying which
alternate conformations are physically compatible with one
another, other than the A, B, C, etc. identifiers themselves.
This bookkeeping issue creates ambiguity in situations
where, for example, residue X with conformations A and B
is near residue Y with conformations A, B, and C. In such
a case, it is unclear which conformations of residue X are
energetically compatible with conformation C of residue
Y. The corresponding alternate conformations might be
coupled, uncoupled, or partially coupled.

Evaluation of MD simulations using alternate
conformations
The fractional occupancies of alternate conformations
inferred from RT crystallography can be readily compared
with the corresponding results from a simulation. Confor-
mational probabilities can be extracted from simulations
based on the occupancy of rotameric energy wells, e.g., the
rotamer name strings [272] that are output by software such
as the model validation suite MolProbity [283] or the related
tool phenix.rotalyze from PHENIX [279]. A figure of merit
for the ability to reproduce alternate conformations could be
the root-mean-square error between rotamer probabilities
from simulations and experimental occupancies of alternate
conformers, although future studies could explore more
sophisticated approaches. Note that there are datasets
where occupancies have been shown to vary with tempera-
ture [263]. In addition, the coordinates and occupancies of
alternate conformations can be combined with B-factors to
calculate so-called crystallographic order parameters, which
may be compared with experimental NMR order parameters
[290]; a similar framework could be useful for comparing RT
crystallographic models to simulations.

When comparing computed and observed populations, it
is important to bear inmind that small changes in the free en-
ergy difference between two conformations will lead to large
changes in occupancy if the free energy difference is near
zero, but essentially no change if the free energy difference
is far from zero. This is because, given two conformers A and
B, the probability of being in state A is

pA =
(
1 + exp

(
–∆GAB

RT

))–1
(14)

where∆GAB is the free energy change upon going fromA toB;
and pB = 1–pA, assuming only two accessible conformations.

4.1.4 Diffuse scattering (non-Bragg reflections)
Diffuse or continuous scattering refers to the cloudy,
streaked, speckled, halo-shaped, or otherwise patterned
weak scattering that lies between the Bragg peaks. In
contrast with the Bragg scattering, which is associated with

correlations in themean electron density, the diffuse scatter-
ing is associated with spatial correlations in the deviation of
the density from the mean. Thus, much as the Bragg peaks
can be used to model the mean structure of the molecules
within the unit cell, the diffuse scattering can, at least in
principle, be used to model the coupling of variations in
atom positions. There have been several protein crystal MD
simulations of diffuse scattering, and it is straightforward to
compute diffuse intensities from a collection of simulation
snapshots [89, 93, 280, 291–296]. Although a limited study
did show that the force field can influence the simulated
diffuse scattering [296], it is not yet clear what sort of vari-
ation one should expect. Future crystal simulations should
help clarify whether diffuse scattering data can be useful for
benchmarking force fields.

4.1.5 Hydrogen coordinates from neutron
diffraction

Protein X-ray crystallography generally resolves the coor-
dinates only of atoms with atomic number greater than
one; hydrogens are visible only in well-ordered regions of
ultra-high-resolution structures. This is because X-rays are
scattered by electrons, and a hydrogen atom, with only
one electron, scatters only weakly. In contrast, neutrons
are scattered by atomic nuclei, and hydrogen atoms have
high scattering cross-sections. As a consequence, neutron
diffraction protein crystallography can provide experimental
information on hydrogen atom positions and protonation
states [297, 298]. These data are valuable because hydro-
gens make up nearly half the atoms in proteins and can
play critical functional and structural roles [299, 300]. Thus,
neutron diffraction studies are uniquely suited to discern
hydrogen bonding patterns [102, 301], the orientations of
solvent and side chain groups [302, 303], and the proto-
nation states of critical catalytic amino acids—such as the
histidine in the catalytic triad of a serine protease [304, 305].
By the same token, they provide distinctive information to
benchmark protein force fields.

Neutron diffraction is generally weak and therefore re-
quires large crystals and long data collection times. In ad-
dition, there are only a few suitable neutron sources in the
world. However, macromolecular neutron crystallography
has become more practical in recent years with the commis-
sioning of new, higher flux neutron sources, as well as im-
proved techniques for crystal growth and molecular biology
techniques for producing large amounts of purified proteins.

4.2 Protein crystallography datasets
Here, we highlight protein crystallography datasets that are
well-suited to benchmark force field accuracy, prioritizing
the following features: 1) resolution better than 1.2Å, so
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that observable data have low uncertainty; 2) relatively
unambiguous assignment of protonation states; 3) absence
of ligands or co-factors which might conflate the accuracy of
the small molecule force field with that of the protein force
field (note that benchmark systems for binding free energies
have been reviewed elsewhere [306, 307]); 4) diversity of
secondary and tertiary structural motifs; 5) availability of
crystal data for the same protein system in multiple sym-
metry groups to explore the possible impact of different
crystallographic contacts; and 6) availability of crystal data
for the same protein system at multiple temperatures near
room temperature to probe the ability of the force field to
capture the temperature dependence of the observables.

4.2.1 Scorpion toxin
Scorpion toxin (PDB ID 1AHO) is a 64-residue globular
protein with a room-temperature X-ray data set at 0.96Å
resolution [87]. It has little regular secondary structure—one
9-residue helix and two short β-strands—but is stabilized
by four disulfide bonds. It was the subject of an early MD
simulation [308] that compared simulations of the crystal
conducted with four protein force fields that would now be
considered obsolete. The notable finding at the time was
how diverse the simulation results were, even for simple
metrics like average backbone structure and computed
B-factors. This study supported the idea that crystal simula-
tions could be used for testing protein simulations and could
report on both the stronger interactions that determine
the conformation of an individual chain and also on the
weaker (often solvent-mediated) interactions that stabilize
the crystal lattice. The small size of the unit cell was a more
important consideration in 2010 than it would be today.

4.2.2 Hen egg-white lysozyme
Hen egg-white lysozyme (HEWL) was one of the first proteins
whose structure was solved by X-ray crystallography, and
it is widely used as an experimental model system, in part
because of its ease of crystallization. This protein has 129
residues, eight α-helices, two β-sheets, and four disulfide
bonds. Given these constraints, simulations with differ-
ent force fields are expected to reproduce the structural
features of the deposited models with similar fidelity but
to exhibit differences in fluctuations that are captured by
observables such as electron densities and B-factors.

There are three RT crystal structures of the triclinic
form (P1 space group) of HEWL (PDB IDs 2LZT [88], 2.0 Å
resolution; 6O2H [89], 1.2 Å; 4LZT [90], 0.95Å), as well as a
high-resolution cryo version (PDB ID 2VB1 [91], 0.65Å). For
all four structures, nitrate ions predominate in neutralizing
the protein, and a large number of solvent waters are visible
in the experimental electron density. The crystal density

of the solvent has been determined to high precision [309]
and is very close to that estimated by the MD simulations
discussed below; this suggests that we know the amount of
water in the unit cell to within an uncertainty of just a few
water molecules.

Two studies of the triclinic HEWL crystal provide guidance
for future studies. First, Janowski et al. [310] simulated a
triclinic supercell with 12 protein chains and made extensive
comparisons to the reflection intensities from 4LZT. Perhaps
most insightful was a comparison of two newly refined
atomic models, one refined against the experimental data
and a second refined against the average electron density
from an MD simulation of 3µs. The backbone of the struc-
ture refined against the simulated density was about 0.4Å
away from the experimental structure, which is well outside
the expected coordinate uncertainty of 0.1 Å for a static
crystal model but small compared to differences between
structural models of the same protein derived from crystal
data in different space groups [311]. In addition, simulations
using four protein force fields showed systematic differences
in how close the B-factors refined against simulated densi-
ties were to experiment (Fig. 4). Rather strikingly, B-factors
computed with the ff14SB simulations are considerably
closer to experiment (black) than those computed with three
other protein force fields. This result further supports the
utility of crystallographic data to benchmark protein force
fields.

Second, Meisburger et al. [89] simulated triclinic HEWL
with a primary focus on interpreting diffuse X-ray intensities.
Since collective motions of many protein chains are impor-
tant for diffuse scattering, simulations were carried out us-
ing 1, 27, 125, and 343 unit cells, but they used only a single
protein force field, so this study did not directly address the
suitability of diffuse scattering for force field benchmarking.

There are also RT crystal structures for two other crystal
forms—orthorhombic (PDB IDs 1AKI [92] and 8DYZ [93]) and
tetragonal (PDB ID 8DZ7 [93])—of HEWL, and these may fur-
ther probe the ability of force fields to capture crystal-packing
interactions [93]. Additionally, NMR data for HEWL in solu-
tion is available as part of the Stroet (Section 3.2.3) and Ro-
bustelli (Section 3.2.5) datasets.

4.2.3 Crambin
The small hydrophobic protein crambin, isolated from the
seeds of the Abyssinian cabbage (Crambe abyssinica), was
found early on to form exceptionally well-ordered crystals
[94] and has been used for the development of experi-
mental phasing techniques. Crambin has only 46 residues,
contains both α-helical and β-strand secondary structure,
and is held together by disulfide bridges. Of note here is a
study combining RT X-ray and neutron diffraction to 1.1Å
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Figure 4. Refined Cα root-mean-square fluctuations for four crystal simulations of HEWL, compared to experiment (black). Red: ff14SB, blue:
CHARMM36, cyan: ff14ipq, green: ff99SB. The colored band across the top describes the secondary structure (T: turn, E: β-sheet, H: α-helix,
G: 310 helix, B: isolated bridge). Adapted from Janowski et al. [310].

resolution (PDB ID 3U7T) and allowing for the modeling of
anisotropic displacement parameters for select hydrogen
atoms [95]. More recently, a new dataset of crambin was
collected at RT to 0.70Å (PDB ID 9EWK) [96], and the model
was refined to an R-factor of 0.0591 for reflections four
standard deviations above background and of 0.0759 for all
reflections, with stereochemical restraints released during
the refinement process. This model has one of the lowest
R-factors in the PDB. The estimated standard deviation for
C-C bonds (a measure of the uncertainty in bond lengths
for a model refined without restraints on bond lengths) was
1.6 pm overall (0.6 pm for atoms with no alternate confor-
mations). These estimated standard deviations are similar
in magnitude to those found in the Cambridge Structural
Database (CSD) [312], a database of small molecule crystals
containing particularly reliable molecular geometries. NMR
data has also been reported on recombinantly expressed
crambin [313].

4.2.4 Cyclophilin A
Human cyclophilin A (CypA) is a proline cis/trans isomerase
that is attractive for assessing force fields due to its well-
studied conformational dynamics and high-resolution RT
crystallographic data. Several residues (Ser99, Phe113,
Met61, and Arg55) in the active site form a network that ex-
hibits correlated conformational dynamics on a similar time
scale (millisecond) as catalytic turnover, asmeasured byNMR
relaxation experiments [314]. The alternate conformations
in the CypA active site are primarily related to one another
by transitions between side chain rotamers, but they also
involve backbone shifts that are well-modeled by the back-
rub motion [315, 316]. More recently, multi-temperature
crystallography across a series of eight temperatures added

nuance to our understanding of CypA’s dynamic active-site
network, revealing evidence for more complex, hierarchical
coupling, in which dynamics for some active-site residues
are dependent on the conformation of another key active-
site residue (Phe113) [97]. Diffuse scattering [98] and X-ray
solution scattering [99] have also been measured for CypA.
Thus, CypA has rich dynamics that are well-studied by RT
crystallography and other experiments and are ripe for
comparison to MD simulations.

An attractive crystallography dataset for validating sim-
ulations of CypA is the high-resolution (1.2 Å) RT structure
(PDB ID 4YUO) [97], where various residues adopt two (A, B)
or three (A, B, C) alternate conformations. This complicates
the creation of a single-conformer starting model for a given
simulation; we recommend beginning with either state A or
state B, which have distinct rotamers for Phe113, which is
thought to be the linchpin of the network [97]. One chal-
lenge in using CypA to validate simulations is that its cataly-
sis and matching dynamics have been reported to be on the
millisecond time scale [314]. However, multi-temperature
crystallography also suggests motions at nanosecond time
scales [97]. Mutagenesis and solution scattering also point
to a separate, independent loop region with faster dynam-
ics [99]. Thus, even simulations at shorter than millisecond
time scales are likely to uncover relevant dynamic features
in CypA that can be useful for validation and force field opti-
mization/development. Moreover, CypA is moderately sized,
with 165 amino acid residues, which enables reasonably long
simulations. Enhanced sampling techniques [317] that accel-
erate sampling of solute conformations, such as replica ex-
changewith solute tempering [318], may also be of use. Time
scale issues are considered further in Section 5.2. In addition
to the 1.2Å RT crystal structure, a similarly high-resolution

25 of 47 https://doi.org/10.33011/livecoms.6.1.3871
Living J. Comp. Mol. Sci. 2025, 6(1), 3871

https://doi.org/10.33011/livecoms.6.1.3871


A LiveCoMS Perpetual Review

(1.25Å) cryo structure of CypA (PDB ID 3K0M) [261] in the
same crystal lattice is also available.

4.2.5 Ubiquitin variants
Computational protein design and directed evolution have
been combined to generate ubiquitin variantswith enhanced
affinity to the protein USP7 through stabilization of a specific
conformation of the β1β2 loop [319]. In a subsequent study,
RT X-ray crystallography was used to examine the structural
basis for the increasing affinity of ubiquitin variants over
the course of the design/selection process [100]. The re-
sulting high-resolution RT crystal structures revealed that
the earlier ”core” mutant of ubiquitin (with 6 mutations)
exhibits multiple discrete alternate conformations of the
β1β2 loop, whereas the later ”affinity-matured” mutant (with
3 additional mutations) adopts a singular conformation
of this loop. Also, elsewhere in the protein, both variants
exhibit alternate conformations for a peptide flip of residues
52-53.

High-resolution RT crystallography data and models are
available for both ubiquitin mutant proteins at resolutions of
1.12Å for the ”core” mutant (PDB ID 5TOF) and 1.08Å for the
”affinity-matured” mutant (PDB ID 5TOG). Simulations based
on these datasets should ideally capture the differences
in β1β2 loop conformational heterogeneity observed in
the crystallographic electron density maps for the two vari-
ants (more flexible for the core mutant, more rigid for the
affinity-matured mutant) as well as the peptide flip shared
by both variants. For this system, a number of metrics
could be used to quantify the match between simulations
and experimental data: root-mean-square fluctuations
(RMSF) of backbone atoms in the loop for simulations vs.
for multi-conformer crystal structures, local real-space
fit to the electron density map in the β1β2 loop region,
recapitulation of fractional occupancies for the different
loop conformations (perhaps after clustering the simulation
snapshots), etc. Thus, the high-resolution RT crystallography
datasets available for these ubiquitin variants provide an
opportunity to benchmark force fields for their ability to
provide accurate simulations of protein backbone confor-
mational heterogeneity, as well as accurate predictions of
the effects of amino acid substitutions on conformational
heterogeneity. Note that NMR data for wild-type ubiquitin
in solution is available as part of the Beauchamp (Section
3.2.1), Stroet (Section 3.2.3), and Robustelli (Section 3.2.5)
datasets.

4.2.6 Protein tyrosine phosphatase 1B
Human protein tyrosine phosphatase 1B (PTP1B; also known
as PTPN1) exhibits structural dynamics across a range of time
scales and length scales, as revealed by numerous structural

biophysics experiments. Recently, multi-temperature X-ray
crystallography of apo PTP1B at temperatures from cryo to
RT [101] provided insights into correlated conformational
heterogeneity. The resulting series of crystal structures
featured alternative conformations, each modeled with
partial occupancy, for the active-site WPD loop (open vs.
closed) as well as distal allosteric regions. As temperature
increased, the WPD loop shifted crystallographic occupancy
from the closed to the open state. Simultaneously, the distal
α7 helix, a key component of PTP1B’s allosteric network,
shifted occupancy from the ordered state to a disordered
state, moving into an adjacent solvent channel in the crystal
lattice. Several residues between these regions exhibited
smaller-scale conformational shifts between alternate con-
formations of the WPD loop and the α7 helix, mimicking
the shifts seen previously for an allosteric inhibitor that
displaces α7 [320].

Other studies have used NMR spectroscopy to character-
ize time scales of motion for various regions of PTP1B. NMR
relaxation experiments showed that the active-siteWPD loop
closes on a time scale corresponding to the rate of catalysis
(millisecond) [321]. Beyond the active site, NMR relaxation
experiments, mutagenesis, and molecular dynamics simula-
tions restrained by NMR chemical shifts showed that faster
dynamics are key to allosteric regulation via α7 [322]. Thus,
PTP1B exhibits motions that may be amenable to various dif-
ferent types of simulations, from short, traditional simula-
tions to long, enhanced-sampling simulations.

Both of the major states of the protein are modeled in
the 1.74Å RT (278 K) crystal structure of apo PTP1B (PDB ID
6B8X) [101]: the closed state (alternate conformation A) and
the open state (B). Most regions of the structure aremodeled
either with no alternate conformations or with both A and B
conformations. By contrast, because it is disordered in the
open state of the protein, the α7 helix is modeled as only
the A conformation with partial occupancy, with no coordi-
nates for the B conformation. Note that crystallography was
performed with residues 1-321 of PTP1B, but only residues
1-298 are visible in the electron density, even in the closed
state with α7 ordered; the remaining residues are always dis-
ordered in an open region of bulk solvent within the crystal
lattice. The wealth of types and extents of conformational
heterogeneity it features make this a promising candidate
for force field evaluation. Simulations of PTP1B based on
6B8X should be initiated from either the open state or the
closed state of the protein and should be assessed on the
basis of their ability to recapitulate the allosteric coupling ob-
served in various experiments: as theWPD loopopens, the al-
losteric network should shift toward the corresponding open-
like state, and α7 should become disordered. In addition
to unbiased simulations [323], one could perform biased or
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guided simulations to enforce a shift in one region (WPD or
α7), then examine whether the other region allosterically re-
sponds as expected [324].

4.2.7 Endoglucanase
Combined X-ray and neutron-diffraction data are available
for endoglucanase (EG) from Phanerochaete chrysosporium
at room temperature (PDB ID 3X2P) [102]. As noted in
Section 4.1.5, the neutron data make it possible to use ex-
perimentally derived protonation states for protein residues
[297, 298, 301], removing a potential cause of modeling
errors and uncertainties, while also allowing direct deter-
mination of the orientation of ordered waters and other
factors. Water structure in this case is also much more
clearly defined and amenable to careful curation [302, 303].
Note, however, that this structure includes a non-standard
amino acid and an oligosaccharide ligand.

In one simulation study [303], the EG-cellopentaose
complex from 3X2P was re-refined from 1.5Å neutron and
1.0Å X-ray diffraction data, with careful attention to placing
H/D atoms based on neutron scattering data and H-bond
interactions with the local environment. The re-refined
structure featured several differences in protonation states
with respect to the deposited model and the replacement
of an imidic acid form for an asparagine side chain in the
deposited model with canonical asparagine. This particular
study focused on the ability of MD simulations to correctly
position water molecules defined by the crystallographic
studies. This was accomplished by computing electron den-
sity maps from crystalline simulations of a 2× 2× 2 periodic
supercell under several different solvent conditions, with
several different restraints of the protein heavy atoms and
ligand atoms. Clear indications of force field limitations were
identified. For example, although recovery of experimen-
tally observed crystallographic waters was over 90% when
the protein was restrained modestly to crystallographic
positions, this fraction dropped to 50% without restraints.
The drop was traced to small, local protein motions that
disrupted entire water networks [303], consistent with prior
work [325].

While this study focused primarily on recovery of crys-
tallographic water molecules, it suggests a route forward
in terms of benchmarking force fields on this and similar
systems [303]. The carefully curated, re-refined structures
provide a valuable starting point and should be used as
input for simulations. Force fields could be benchmarked by
repeating the simulation approach used here while compar-
ing results at different restraint strengths. Presumably, as
force fields are improved, this will result in better recovery of
crystallographic water structures at lower protein restraint
strengths or with no restraints. Additional benchmarking

studies could more closely focus on how well various force
fields preserve the structure of the protein.

4.2.8 Staphylococcal nuclease
Staphylococcal nuclease (SNase) has provided a particularly
valuable dataset for diffuse scattering studies (PDB ID
4WOR) [103]. Until fairly recently, this was the only complete,
high-quality, three-dimensional (i.e., sampled on a 3-D recip-
rocal space grid using data from many diffraction images
obtained at different crystal orientations) diffuse scattering
dataset available for a protein crystal [295]. Crystalline MD
simulations greater than 1µs in length allowed calculation
of diffuse scattering intensity for direct comparison with
experiment [295]. More recent work [280] extended these
simulations to cover a 2×2×2 supercell, with roughly 5µs of
data, and obtained improved agreement with experimental
scattering data, perhaps because the simulations used a
starting structure that modeled missing terminal residues
and a bound ligand that better represented the system in
the crystal experiment. Different force fields gave different
levels of agreement with experimental diffuse scattering
patterns [296], supporting the concept of using such data to
benchmark protein force fields.

5 Best practices for setup and analysis
of benchmark simulations

5.1 Setup of benchmark simulations
Simulations intended to benchmark protein force fields
against experimental observables should strive to replicate
the conditions under which those observables were mea-
sured as closely as possible. Below we provide specific
recommendations to achieve this goal.

5.1.1 Initial coordinates
Benchmark simulations must be started from a set of
initial coordinates for the protein. For folded proteins with
structural models refined against experimental data, the
initial coordinates can simply be those of the appropriate
structural model. When both crystal and NMR models are
available, one should select the model that corresponds to
the desired conditions of the simulation, i.e., NMR models
should be selected for simulations of proteins in dilute solu-
tion, while crystal models should be selected for simulations
of protein crystals. For short peptides, the initial coordinates
are often set to an extended conformation in which all
backbone dihedrals are set to 180◦. For disordered proteins,
a structural model for a partially folded conformation can
be used when available, and an extended conformation can
be used for residues not included in the structural model.
An extended conformation can also be used for the entire

27 of 47 https://doi.org/10.33011/livecoms.6.1.3871
Living J. Comp. Mol. Sci. 2025, 6(1), 3871

https://doi.org/10.33011/livecoms.6.1.3871


A LiveCoMS Perpetual Review

disordered protein, although this setup requires a very
large simulation box with many solvent molecules. To avoid
large boxes, several methods [326–331] can be used to
generate one or more initial conformations consistent with
an expected radius of gyration.

While it is common practice to remove hydrogen atoms
present in structural models and add them back using
standard residue libraries, it is essential to assign correct
protonation states to titratable side chains and protein
termini. High-resolution crystal models, especially those
refined against neutron diffraction data, can include the co-
ordinates of hydrogen atoms and thus give high confidence
in protonation states. Otherwise, the choice of protonation
states should generally reflect the expected protonation
based on the pH of the experiments used to measure the
observables. However, the local environment of a residue—
such as hydrogen bonds to nearby residues, long-range
electrostatics, and solvation—may indicate a protonation
state different from the expected one at the experimental
pH. Similarly, the local environment of cysteine residues can
indicate whether they should be modeled with a disulfide
bond. Tools such as PROPKA [332] and PDB2PQR [333] can
assign protonation states and disulfide bonds based on local
environment and a specified pH.

5.1.2 Solvation and periodic box construction
Most benchmark simulations model water molecules ex-
plicitly, and the water model should be considered part of
the force field being benchmarked just as much as the pa-
rameters applied to the protein. Indeed, the choice of force
field parameters for the water can significantly impact the
resulting protein ensembles [35, 235, 334]. In particular, the
widely used 3-point water model TIP3P [226] favors compact
structures excessively [35, 334] and has low viscosity com-
pared to experimental water [335]. The consequences will
be more pronounced for simulations of disordered proteins
and for calculations of kinetic observables, such as NMR
spin relaxation rates. In such applications, simulations using
TIP3P should be expected to exhibit some disagreement
with experiment due to the properties of the water model
rather than the protein force field.

For crystal simulations, the simplest setup is a periodic
box containing a single unit cell from the crystal. A single unit
cell might be adequate for some Bragg data applications or
for modeling the isotropic component of diffuse scattering
data. Other applications might require a supercell in which
the periodic simulation box includes multiple copies of the
crystal unit cell that can move independently. For example,
in diffuse scattering studies, using two copies of the unit
cell along each lattice vector avoids artificial correlations
between pairs of atoms that are separated by a distance

smaller than the unit cell. This setup can substantially
increase the agreement with the anisotropic component of
diffuse scattering data [280]. An appropriate choice of the
supercell also is required for direct comparison of simula-
tions with the full set of diffuse scattering measurements:
in general, a full dataset with Nh, Nk, and Nl points sampled
per reciprocal lattice vector along Miller indices hkl can be
simulated using a box with Nh, Nk, and Nl copies of the unit
cell along lattice vectors a⃗, b⃗, and c⃗. Representative lattices
generated by this approachmay be, e.g., 2×2×2 or 7×7×5.

For dilute solution simulations, the periodic box should
contain the protein and a large enough number of solvent
molecules to effectively screen interactions betweenperiodic
images of the protein (see next paragraph). Many system-
building tools provide automated methods to construct pe-
riodic boxes filled with pre-equilibrated solvent around a so-
lute, with the box geometry defined by user-provided shape
and dimensions. While triclinic simulation boxes are straight-
forward to build and visualize, other polyhedra that can fill
space using only translations can provide the sameminimum
distances between periodic images with lower volume and
thus faster simulation speed. The rhombic dodecahedron
[336] has the smallest volume of these space-filling polyhe-
dra and is the recommended box shape for simulations of
solutes that are roughly spherical, including most globular
proteins.

The size of the periodic simulation box can be specified
using either the total box length or the solvent padding, i.e.,
the shortest acceptable distance between a protein atom
and the edge of the simulation box. If the solvent padding
is shorter than 10Å, enough space for two to three shells
of water, then interactions between periodic images can
perturb observed quantities such as solvation free energies
and secondary structure preferences [337, 338]. Based on
these considerations, for folded proteins that are expected
to sample only compact structures during the simulation,
a solvent padding of 10Å to 15Å is sufficient to avoid such
artifacts. For disordered proteins, a larger solvent padding
should be used to accommodate these less compact struc-
tures. A common practice for disordered proteins is to use a
total box length that is twice the radius of gyration plus 20Å.

5.1.3 Salt ions and co-solutes
For proteins with a net charge, counterions should be added
to the simulation box to neutralize the system. If the observ-
ables targeted by the simulationweremeasured in a solution
containing salt, then additional ion pairs should be added to
the simulation box to model the experimental ionic strength
of the bulk salt. If the protein has no net charge, the desired
number of ion pairs can be estimated from the number of
water molecules used to solvate the system Nwater.
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Nions =
Nwater
Cwater

Cions (15)

where Cwater is the expected concentration of bulk water in di-
lute solution, 55.4mol L–1, and Cions is the experimental con-
centration of bulk salt. If the protein has a net charge, then
the solvent near the protein will be depleted of ions of like
charge and enriched in ions of opposite charge, relative to
bulk [339]. In this case, the desired number of ion pairs can
be estimated using the SLTCAP method (this expression is
equivalent to Eq. 5 in Schmit et al. [339]).

Nions =
Nwater
Cwater

Cions
(√

1 + λ2 – λ
)

λ =
∣∣Q∣∣Cwater
2NwaterCions

(16)

In addition to salt, co-solutes such as buffering agents
or crowding agents may be present in solutions used to
measure observables. Such co-solutes are particularly im-
portant for protein crystals, which often require co-solutes
in the mother liquor in order to induce crystallization. It
is sometimes necessary to model co-solutes explicitly to
accurately describe the solvent environment within protein
crystals [303]. Modeling co-solutes explicitly can improve
the fidelity of benchmark simulations, but care must be
taken to ensure that appropriate force field parameters
are available for the co-solutes and that sampling is long
enough to observe changes in co-solute locations that can
influence protein conformations and convergence of the
protein ensemble.

5.1.4 Thermodynamic ensembles
Because the observables of interest here are typically mea-
sured at constant pressure and temperature, benchmark
simulations should sample from the isobaric-isothermal
(NPT) ensemble. Some commonly used methods for control-
ling the pressure and temperature in simulations produce
samples from different, unphysical ensembles. In particular,
Berendsen or weak-coupling methods fail to preserve the
equipartition of energy and can lead to artifacts such as the
flying ice cube effect [340, 341]. These methods should be
avoided in favor of methods that sample correctly from phys-
ical ensembles, such as Langevin dynamics, the canonical
velocity rescaling thermostat, and the Monte Carlo barostat.
Additional care is needed when computing kinetic quantities,
as some thermostats—most notably Langevin dynamics,
with its added frictional damping and random forces—may
introduce significant kinetic artifacts.

5.2 Analysis of benchmark simulations
5.2.1 Equilibration
It is recommended to discard the initial segment of a molec-
ular dynamics simulation before collecting the frames that
will be used to calculate observables. The discarded initial
segment, often termed the equilibration or burn-in run, al-
lows the system to relax from its initial configuration, which
may be far from the equilibrium distribution dictated by the
force field. Several methods are available to set the length
of the equilibration run. One common practice is to monitor
the volume or density of the barostatted system and to dis-
card frames until this quantity reaches a plateau. However,
for novel force fields or complex systems such as protein
crystals, a plateau in volume can be reached before strain
from the initial configuration can be dissipated. Thus, we rec-
ommendmonitoring quantities such as potential energies as
well to determine when a system is equilibrated. An equili-
bration time can also be chosen based on the autocorrela-
tion function of a time series of an observable [342].

5.2.2 Convergence
Precise estimation of quantities from molecular dynamics
simulations requires a large number of samples drawn
from the system’s ensemble. It is good practice to assess
the convergence of simulations by determining whether
estimates of observables are robust to changes in the set of
conformational samples used to estimate them. A number
of methods have been developed to assess convergence
[343]. In one simple approach, the time series of observable
estimates is visualized to check for drift over the course of
the simulation. Blocking analysis, a more rigorous approach,
divides the trajectory into blocks and looks for convergence
of the standard error of the mean as the block size is
increased [344].

Assessment of convergence will indicate when the popu-
lations of states visited during a simulation are not known
precisely, but such analysis cannot identify when a simula-
tion fails entirely to visit regions of a protein’s configuration
space that carry significant weight in the Boltzmann distribu-
tion. This failure mode can occur, for example, when high
free energy barriers exist between minima that contribute
to the protein’s ensemble in the experimental measure-
ments. Diagnosing this problem requires some knowledge
of the proteins being simulated, either from experimental
measurements or from a reference ensemble known to
model the system well. If benchmark simulations of a
particular protein consistently fail to visit relevant regions of
the protein’s configuration space across multiple force fields,
enhanced sampling methods [317] can accelerate barrier
crossing at the cost of additional complexity in obtaining
estimates of observables and uncertainties [343].
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5.2.3 Statistical analysis
When comparing sets of simulations against experimental
data, it is essential to determine whether the differences are
statistically significant [105]. Statistical uncertainties in simu-
lated data are perhaps most reliable if obtained by running
multiple independent simulations but can also be obtained
by analysis of a single simulation [343]. The raw experimen-
tal data also have uncertainties, and additional uncertainty
may result from model assumptions, such as the values of
the Karplus parameters for 3J-values or the representation of
NOESY intensities as upper bounds to interatomic distances.
Whenmultiple proteins are simulated and several properties
are considered, it may not be straightforward to determine
if two sets of simulations are significantly different or even
which simulation shows the overall better agreement with
the available experimental data [79, 345, 346]. The differ-
ences in a particular property between different force fields
will be affected by both the variability due to the choice of pro-
tein and the variability between independent replicate simu-
lations. A statistical approach that takes mixed effects explic-
itly into account [79] may be most appropriate.
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Appendix A Effective distances probed in
NOESY experiments

The NOE between two nuclei, A and B, depends primarily on
their dipolar cross relaxation rate, σAB.

σAB = K
[
6J(ωA + ωB) – J(ωA – ωB)

]
K =

(µ0
4π

)2 ħ2γ2Aγ
2
B

4

(17)

where µ0 is the vacuum permeability, ħ is the reduced Planck
constant, γA and γB are the gyromagnetic ratios of the nuclei,
and ωA and ωB are the Larmor frequencies of the nuclei. J(ω)
is a spectral density function associated with the relative ge-
ometry of the two spins, whose correlation function is deter-
mined by the dynamics of the lattice. It essentially describes
the spectrum of the power available from the lattice to ac-
tivate the dipolar cross relaxation pathway. Thus, the spec-
tral density function is given by the Fourier transformation of
the correlation function for the internuclear vector in the lab
frame, C(t):

J(ω) = 2
∫ ∞

0
dtC(t) cos(ωt) (18)

It is often assumed [217] that internal motions are separable
from overall tumbling so that the correlation function can be
written as

C(t) = CO(t)CI(t) (19)

where the correlation function for overall tumbling is

CO(t) =
1
5
exp

(
– t
τC

)
(20)

and the correlation function for internal motions is

CI(t) =

〈
3 cos2 θAB(t) – 1
2RAB(0)3RAB(t)3

〉
(21)

Here, τC is the rotational diffusion time constant for isotropic
tumbling, RAB(t) is the distance between the nuclei at time t,
and θAB(t) is the angle between the internuclear vectors at
time 0 and time t in the molecular frame. Note that some au-
thors use a different convention inwhich CO(t) is definedwith-
out the numerical factor of 15 , which is absorbed into the con-
stant factor for the dipolar cross relaxation rate (K in Eq. 17).
Therefore, the equations in this appendixmay differ from the
equations in certain publications by numerical factors.

As discussed in Section 3.1.4, NOESY experiments provide
effective mean distances between nuclei. We next discuss
two common approaches to determining effective distances
and the conditions under which they apply. For a more de-
tailed treatment, see Neuhaus & Williamson [203] and Vo-
geli [204]. For simplicity, we consider the case of a homonu-
clear NOESY experiment, where—to good approximation—
ωA = ωB = ω, so the dipolar cross relaxation rate reduces to
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σAB = K
[
6J(2ω) – J(0)

]
(22)

For a rigid molecule that tumbles isotropically with a ro-
tational diffusion time constant τC, the spectral density func-
tion is given by

J(ω) = 2
5

(
1
R6AB

)
τC

1 + ω2τ2C
(23)

where RAB is the constant distance between the nuclei. In this
case, the dipolar cross relaxation rate becomes

σAB =
2
5

K
R6AB

(
6τC

1 + 4ω2τ2C
– τC

)
(24)

For a non-rigid molecule, it is often assumed that inter-
nal motions (i.e., intramolecular motions) are uncorrelated
with molecular tumbling and can be characterized by a sin-
gle exponential decay with a time constant τint. Under these
assumptions, called the Lipari-Szabo or model-free approxi-
mation [217], the spectral density is given by

J(ω) = 2
5

〈
1
R6AB

〉(
S2 τC
1 + ω2τ2C

+
(
1 – S2

) τtot
1 + ω2τ2tot

)
(25)

where

1
τtot

= 1
τC

+ 1
τint

(26)

and

S2 =

〈
1
R6AB

〉–1
4π
5

2∑
m=–2

〈
Y2m(θAB,ϕAB)

R3AB

〉2

(27)

Here, Y2m(θAB,ϕAB) are the second-order spherical harmon-
ics defined using the spherical coordinates (θAB,ϕAB) of the
internuclear displacement in the molecular frame. S2 is an
order parameter that is determined by the plateau value of
the correlation function C(t) at long times and characterizes
the orientational freedom of the internuclear displacement.
The order parameter varies between one—when the inter-
nuclear displacement is rigid in the molecular frame—and
zero—when the internuclear displacement tumbles isotropi-
cally in the molecular frame. In the Lipari-Szabo model [217],
the dipolar cross relaxation rate becomes

σAB =
2K
5

〈
1
R6AB

〉[
S2
(

6τC
1 + 4ω2τ2C

– τC

)

+(1 – S2)
(

6τtot
1 + 4ω2τ2tot

– τtot

)] (28)

This expression is difficult to use in practice because the
time constant for internal motions—and thus τtot—cannot
be easily measured. Fortunately, we can simplify this expres-
sion by considering limiting cases when internal motions are

either much slower or much faster than molecular tumbling.
In the limit where internal motions are much slower than
molecular tumbling, i.e. τint ≫ τC, τtot ≈ τC such that the
terms containing the order parameter S2 cancel and the dipo-
lar cross relaxation rate loses its dependence on the angular
degrees of freedom.

σAB =
2K
5

〈
1
R6AB

〉(
6τC

1 + 4ω2τ2C
– τC

)
(29)

This expression looks like the expression for a rigid molecule
(Eq. 24) with the internuclear distance probed by the NOE
enhancement replaced by the following effective distance.

Rslow
AB =

〈
1
R6AB

〉–1/6

(30)

Thus, in the limit when internal motions are much slower
than molecular tumbling, the NOE averages the variation in
internuclear distance due to internal motions raised to the
reciprocal sixth power and is independent of the orientation
of the internuclear displacement.

In the opposite limit, i.e., when internalmotions aremuch
faster than molecular tumbling (τint ≪ τC), the term in Equa-
tion 25 containing (1 – S2) becomes negligible, so

σAB =
2K
5

〈
1
R6AB

〉
S2
(

6τC
1 + 4ω2τ2C

– τC

)
(31)

In this case, the effective distance probed by the NOE en-
hancement is

Rfast,ang
AB =

4π
5

2∑
m=–2

〈
Y2m(θAB,ϕAB)

R3AB

〉2
–1/6

(32)

The effective distance can be simplified further by assuming
that the distances RAB exhibit greater variations than the an-
gles in the spherical harmonic functions. Under this assump-
tion, the angular dependence is ignored, and the effective
distance is chosen to be

Rfast
AB =

〈 1
R3AB

〉2
–1/6

=

〈
1
R3AB

〉–1/3

≤ Rfast,ang
AB (33)

where the inequality comes from the observation that the
spherical harmonic functions are normalized such that the
angular dependence in Eq. 32 must reduce the magnitude
of the quantity averaged over and thus increase the effective
distance.
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Appendix B The Redfield equations for
NMR spin relaxation

Spin relaxation rates in proteins are oftenmeasured for spins
coupled through a covalent bond, and a heteronuclear NOE
can also bemeasured for the same bond. The Redfield equa-
tions [210] describe how the spin relaxation rates and NOE
depend on the dynamics of the bond within a molecule. For
the backbone 15N amide bond in proteins, the Redfield equa-
tions are

R1 =
1
T1

= K
R6NH

(
6J(ωH + ωN) + 3J(ωN) + J(ωH – ωN)

)
+
(
ωN∆σ

)2
15

J(ωN)

R2 =
1
T2

= 1
2

K
R6NH

(
6J(ωH + ωN) + 3J(ωN) + J(ωH – ωN)

+6J(ωH) + 4J(0)
)
+
(
ωN∆σ

)2
90

(
3J(ωN) + 4J(0)

)
NOE = K

R6NH

(
6J(ωH + ωN) + J(ωH – ωN)

)
× γH
γN

T1

(34)

where, similar to Appendix A,

K =
(µ0
4π

)2 ħ2γ2Nγ
2
H

4
(35)

and µ0 is the vacuum permeability, ħ is the reduced Planck
constant, γN and γH are the gyromagnetic ratios of the nuclei,
ωN and ωH are the Larmor frequencies of the nuclei, RNH is
the amide bond length (assumed constant), and J(ω) is the
spectral density function (Eq. 18). ∆σ is the chemical shift
anisotropy for the 15N spin, usually taken to be 160 ppm.

The length of the N-H bond is typically assumed to be con-
stant, so that the correlation function for internal motions
(Eq. 21) is given by the rotational correlation function

Crot(t) =
〈
3
2
cos θAB(t) –

1
2

〉
(36)

Under the Lipari-Szabo or model-free approximation
[217], in which overall molecular tumbling and intramolec-
ular motions are assumed to be uncorrelated and each
characterized by a single exponential decay, the spectral
density function becomes

J(ω) = 2
5

(
S2 τC
1 + ω2τ2C

+
(
1 – S2

) τtot
1 + ω2τ2tot

)
(37)

where S2 (Eq. 27) is the order parameter that characterizes
the orientational freedom of the internuclear vector, τC is the
time constant for overall molecular tumbling, τint is the time
constant for intramolecular motion, and τtot is given by Eq.
26.

Appendix C The Solomon-Bloembergen
equation for PRE

The relationship between structure, dynamics, and the
transverse PRE Γ2 is rigorously described by the Solomon-
Bloembergen equation [347].

Γ2 =
K
2
(
3J(ωH) + 4J(0)

)
(38)

where

K =
(µ0
4π

)2 γ2Hg2µ2B
4

(39)

and µ0 is the vacuum permeability, g is the electron g-factor,
µB is the magnetic moment of the free electron, γH is the pro-
ton gyromagnetic ratio, ωH is the Larmor frequency of the
proton nucleus, and J(ω) is the spectral density function. As
introduced in Appendices A and B, it is common to assume
the Lipari-Szabo approximation [217] in order to write the
spectral density using an order parameter S2.

J(ω) = 2
5

〈
1
R6eH

〉(
S2 τC
1 + ω2τ2C

+
(
1 – S2

) τtot
1 + ω2τ2tot

)
(40)

where ReH is the distance between the amide proton and the
paramagnetic electron.
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