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ABSTRACT: Given the growing interest in path sampling
methods for extending the time scales of molecular dynamics
(MD) simulations, there has been great interest in software tools
that streamline the generation of plots for monitoring the progress
of large-scale simulations. Here, we present the WEDAP Python
package for simplifying the analysis of data generated from either
conventional MD simulations or the weighted ensemble (WE)
path sampling method, as implemented in the widely used
WESTPA software package. WEDAP facilitates (i) the parsing of
WE simulation data stored in highly compressed, hierarchical
HDF5 files and (ii) incorporates trajectory weights from WE
simulations into all generated plots. Our Python package consists
of multiple user-friendly interfaces: a command-line interface, a graphical user interface, and a Python application programming
interface. We demonstrate the plotting features of WEDAP through a series of examples using data from WE and conventional MD
simulations that focus on the HIV-1 capsid protein’s C-terminal domain dimer as a showcase system. The source code for WEDAP is
freely available on GitHub at https://github.com/chonglab-pitt/wedap.

■ INTRODUCTION
To characterize biological processes beyond the time scales of
conventional molecular dynamics (cMD) simulations, various
enhanced sampling methods have been developed,1 including
the weighted ensemble (WE) path sampling strategy,2,3 which
can be carried out using the Weighted Ensemble Simulation
Toolkit with the Parallelization and Analysis (WESTPA)
software package.4,5 WESTPA is a highly scalable, interoper-
able software package for carrying out WE simulations, with
successful applications to the simulation of protein−ligand
unbinding,6 protein−protein7 or protein−DNA binding,8
large-scale protein conformational rearrangements,9 phase
separation of lipid bilayers,10 membrane permeability of
drug-like molecules,11 and protein folding.12,13

To run a WE simulation, WESTPA initiates multiple
weighted trajectories (N) in parallel from one or more initial
conformations (bstates). The configurational space is
typically divided into bins along a progress coordinate
(pcoord) toward a target state (tstate). After a fixed
time interval (τ), a resampling procedure is applied in which
the trajectory ensemble is evaluated for either splitting
(replicating trajectories) or merging (combining trajectories),
with the goal of obtaining even coverage of the binned
configuration space. This resampling procedure manages and
ensures a statistically rigorous conservation of trajectory
weights (w), where ∑i=1

N wi = 1. Each WE iteration consists
of dynamics propagation for a fixed time interval, τ, followed
by resampling. Trajectories that reach the target state are

“recycled” back to the initial state (keeping the same weight)
to maintain a nonequilibrium steady state. If trajectories are
not recycled, we would refer to the simulation as an
equilibrium WE simulation. In addition to the progress
coordinate, a number of auxiliary data sets (auxdata) can be
calculated during a WE simulation for postsimulation analysis.
Ideally, the result is an ensemble of unbiased pathways that can
be used to directly calculate rate constants between any pair of
states.
In this application note, we present the Weighted Ensemble

Data Analysis and Plotting (WEDAP; pronounced we-dap)
software package for creating plots of varying complexity from
either WE or cMD simulation data. WEDAP is currently
divided into three submodules: (i) wedap for data
distributions of WE data, (ii) mdap for data distributions of
cMD data, and (iii) wekap for plotting kinetics data from WE
simulations. Each module is available through the command
line interface (CLI), a graphical user interface (GUI), or
directly through the Python application programming interface
(API) (Figure S1). Built upon Matplotlib,14 plotting with
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WEDAP can be useful for tracking simulation progress on
remote computing resources and for generating publication-
quality figures postsimulation. The multiple WEDAP interfaces
are useful for addressing a wide range of end-user skill sets,
where the GUI and CLI are useful for quickly visualizing
simulation data without having to write a Python script. When
a more complex plot is needed, the modular Python API is
available for advanced users to build upon.
WEDAP satisfies the need for an open-source Python-based

software package focused on plotting large-scale simulation
data stored in highly compressed, hierarchical HDF5 files
(Figure S2). While other software packages for plotting have
been developed, these other tools are either not written in
Python,15−17 limiting API access for custom routines and data
pipelines, or are tied to pre-existing analysis packages and
specific dynamics engines.18,19 For 2D energy landscapes,
PyEMMA20 and Deeptime21 have available Python functions
for generating 2D contour plots and histograms of cMD data,
but these functions are not compatible with path sampling
methods, where there are very few plotting tools22 currently
available.

■ SIMULATION DETAILS
To demonstrate the capabilities of WEDAP, we focus on cMD
and WE simulation data from sampling the conformational
ensemble of the HIV-1 capsid protein (CA) C-terminal
domain (CTD) dimer, herein termed CA-CTD (Figure 1).

The CTD of the two-domain capsid protein forms a dimer that
connects individual chains in the mature capsid lattice. The
flexible CA-CTD dimer interface25 is a potential target for the
development of antiretroviral therapeutics.26

Our simulations employed the implicitly polarized AMBER
ff15ipq protein force field27 with a truncated octahedral box of
explicit SPC/Eb

28 water molecules with a 12 Å clearance
between the solute and the edge of the box. Unpaired charges
were neutralized by adding Na+ or Cl− ions, treated with Joung
and Cheatham ion parameters.29 Protonation states for
ionizable residues were adjusted to represent the major species
present at pH 6.5. A 2 fs time step was enabled in all
simulations by constraining all bonds with hydrogen to their
equilibrium values using the SHAKE algorithm.30

WE simulations were run with a resampling time interval (τ)
of 100 ps and a 1D progress coordinate tracking the root-
mean-square deviation (RMSD) of solute heavy-atoms. Fixed
bins for WE were placed along the progress coordinate at a 0.5
Å interval between 0 Å and 8 Å with a target count of four
trajectories per bin. For rate-constant calculations, we used a
target state of >5 Å heavy-atom RMSD. Trajectory coordinates
were saved every 10 ps for analysis. Overall, we ran 200 WE
iterations yielding 0.8 μs of aggregate simulation time. To
generate cMD data, we ran a single-μs simulation. The
reference structure used for all native-contact and RMSD
calculations was the CA-CTD NMR structure (PDB31 ID:
2KOD32).

■ OVERVIEW OF EXAMPLES
Here we present a set of 13 examples demonstrating various
features of the WEDAP package. All of our examples use either
WE or cMD data from simulations of CA-CTD and the first
dimension of the progress coordinate, auxiliary data set, or
cMD data set. With multidimensional inputs, data set
dimensions can be specified using the --Xindex, --Yin-
dex, or --Zindex flags. A Jupyter notebook, along with all
corresponding files needed to reproduce each of our examples,
is available in the WEDAP GitHub repository.
While we track different metrics related to conformational

sampling in our examples, the plots generated using WEDAP
are available to any data set saved while running WESTPA or
any data set calculated postsimulation. For example, if we were
simulating protein−ligand unbinding, we could create plots to
track protein−ligand distance or the probability of specific
residue-level contacts related to allosteric interactions.

Example 1: Monitoring the Time-Evolution of a 1D
Probability Distribution. Our first example generates a plot
of the time-evolution of a WE simulation (Figure 2.A), with
the probability distribution of the heavy-atom RMSD of CA-
CTD on the x-axis and each iteration of the WE simulation on
the y-axis. The color bar represents the probabilities of each
bin in the histogram. The probability values are derived from
the raw counts of all trajectory segments in each WE iteration
and are appropriately weighted. This weighted histogram is
normalized and shown on an inverted natural log scale

( )ln P x
P x

( )
(max( ))

, in units of kBT. These evolution plots are

useful for observing probability changes through the
progression of the WE simulation but are limited to tracking
a single data set. In this example, we use the first dimension of
the progress coordinate, but other data sets or data set
dimensions can be used by adjusting the --Xname and
--Xindex flags.

Example 2: Generating a 1D Probability Distribution
of Simulation Data. We can plot the 1D probability
distribution of a single WE iteration or summarize a range of
WE iterations. Here, we plot the cumulative probability
distribution of the heavy-atom RMSD for the entire range of
WE iterations. This allows us to focus on a subset or overview
of the data presented in the time-evolution plot (Example 1).
The distributions being plotted are summations of histogram
counts, normalized, and weighted across multiple WE
iterations.
We can plot multiple RMSD data sets from a WESTPA

HDF5 file using wedap or from cMD simulation data using
mdap (Figure 2.B). The WE data are represented by a

Figure 1. Our plotting examples use either cMD or WE simulation
data involving the HIV-1 capsid protein CTD dimer. The CA-CTD
dimer connects the subunits of the assembled capsid (PDB ID:
3J3Q23), as boxed in red. The full-length capsid protein dimer is
expanded and shown using ribbon diagrams (PDB ID: 2M8L24),
where each monomer is sectioned into the respective N-terminal and
C-terminal domains (NTD and CTD) using dashed lines.
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weighted probability distribution, while the cMD distribution
assumes an equal set of weights.

Example 3: Generating a 2D Probability Distribution
of Simulation Data. We can make 2D probability
distributions using more than one feature, allowing us to
compare both the heavy-atom RMSD and the radius-of-
gyration (Figure 2.C) for the WE simulation data. These same
plots are also available using cMD simulation data.

Example 4: Generating a Scatter Plot Colored by a
Feature of Interest. Next, we create and color a scatter plot
by a feature of interest, such as heavy-atom RMSD. The x-axis
data here are the radius-of-gyration, and the y-axis data are the
solvent-accessible surface area (SASA) (Figure 2.D). Each data

point corresponds to a frame (conformation) from the WE or
cMD simulation data. The marker size (--scatter-size)
and amount of data used (--scatter-interval) can be
customized for clearer visualization.

Example 5: Generating a Hexagonal Binned Plot
Colored by a Feature of Interest. Using the same data from
Example 4, we can generate a hexagonal binned plot where
each bin is colored by a feature of interest (Figure 2.E), that is,
each bin has an associated color, with the data range and the
data set represented being correlated to the color bar. The
amount of hexagonal bins can be set using the --hexbin-
grid flag, and each bin represents the average of all the
frames from a WE or cMD simulation that fall within the

Figure 2. Gallery of WEDAP plots. Each panel of this figure corresponds to a subsection of the Overview of Examples section. In brief, we
demonstrate how to create plots using WEDAP for 1D WE time-evolutions (A), 1D probability distributions (B), 2D probability distributions (C),
3D scatter plots (D), 3D hexagonal binned plots (E), 2D histograms with contour lines (F), 3D projected contour plots (G), joint plots with
contour fills (H), 4D scatter plots (I), trajectory tracing (J), principal component analysis with cluster labels (K), and rate constants over molecular
time (L).
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hexagonal bin boundaries. For WE data, each hexagonal bin is
reduced using a weighted average (by default), while, for cMD
data, a standard, unweighted average is used. By representing
our data with hexagonal bins, we avoid issues with overlapping
data points that may arise with scatter plots of large data sets.

Example 6: Generating 2D Histograms and Contour
Plots. WEDAP can also create contour plots or combinations
of both histograms and contour plots. We again compare
heavy-atom RMSD and radius-of-gyration data to generate an
initial 2D probability distribution. We set the probability units
to kcal

mol
(--p-units kcal) with a maximum limit

(--pmax), and contour lines are overlaid at every single kcal
mol

(Figure 2.F). The histogram uses an alternate color map
(--cmap), the contour lines are smoothed using a Gaussian
noise filter (--smoothing-level), contour line-widths
are thinned (--line width), and custom histogram ranges
are specified (--histrange-x and --histrange-y).
Likewise, we could compare 2D distributions between multiple
simulation data sets from WE or cMD simulations.

Example 7: Generating 3D Projections of Contour
Plots. Using the --proj3d or −3d flags, we can visualize a
contour plot of the heavy-atom RMSD and radius-of-gyration
data on a 3D projection (Figure 2.G). Instead of using a flat
color bar for the third dimension, seeing the full spatial
resolution of the z-axis can be more visually intuitive for
interpreting barrier heights, potential metastable states, and
pathways between states. We also set a custom contour interval
using the --contour-interval flag.

Example 8: Generating Distributions for Each
Dimension of a 2D Probability Distribution. Joint plots
are a useful way to understand both the relationship between
two observables in the middle panel (the joint distribution)
and the distribution of each observable on the side panels (the
marginal distributions). These marginal distributions can be
added to any 2D probability distribution from WE or cMD
simulation data using the --joint-plot or -jp flags.
Here, we compare the heavy-atom RMSD against the radius-
of-gyration using a contour plot with the contour fills only (no
contour lines) (Figure 2.H). We include custom color mapping
(--cmap), probability units (--p-units), WE iteration
ranges (--first-iter and --last-iter), probability
limits (--pmin and --pmax), plot style (--style),
contour data smoothing (--smoothing-level), and
axes limits (--xlim and --ylim).

Example 9: Generating 4D Scatter Plots. To compare
four different features from WE or cMD simulations, we can
project a scatter plot onto three dimensions and include a color
bar as a fourth dimension (Figure 2.I). This 4D plot is called
by using the --proj4d or -4d flags. In this example, we
create a 3D scatter plot as a function of SASA, radius-of-
gyration, and heavy-atom RMSD. Each data point is colored by
the number of native contacts, as indicated by the color bar. If
the color bar is not needed, a 3D projected scatter plot can still
be created using the --proj3d or -3d flags. 4D scatter
plots can be helpful for visualizing a high-dimensional progress
coordinate or when monitoring progress toward a multidimen-
sional target state condition.

Example 10: Tracing a Pathway along a Probability
Distribution of WE Data. To trace a single pathway as a
function of the WE progress coordinate, we can request, for
example, WE iteration 200 and trajectory segment 20 by
including --trace-seg 200 20 in our wedap command.

Alternatively, we can plot the pathway based on the closest
data point to an input set of x- and y-axis values. Using the
closest data point, we can trace the WE iteration and trajectory
segment pair from, for example, a heavy-atom RMSD of 5.5 Å
and radius-of-gyration of 19.5 Å by including --trace-val
5.5 19.5 in our input wedap command. The “trace by
value” feature will also output the relevant WE iteration and
trajectory segment, enabling easy tracking and further analysis.
For this demonstration, we show the trajectory segment-based
trace in white and the value-based trace in gold, overlaid on a
hexagonal binned plot (Figure 2.J).

Example 11: Extracting WE Data for Analysis Using
External Python Libraries. In this next example, we extract
the progress coordinate, auxiliary data, and all corresponding
trajectory weights using WEDAP. This is done using the
Python API, which can then directly interface with other
Python libraries such as scikit-learn.33 The WE extracted
feature array was then scaled and reduced to two dimensions
using principal component analysis. We performed clustering
on this reduced feature set using a weighted k-means
algorithm, from which the cluster labels were plotted as the
colors of each data point along the first two principal
components (Figure 2.K). In this manner, we can conveniently
extract and use the data from a WESTPA simulation for scikit-
learn, PyTorch,34 or any other Python library. This is a useful
approach for interfacing WE simulation data with machine
learning or deep learning methods.
WEDAP can also be used to make weighted probability

distributions along the newly calculated principal components,
optionally saving the input data set into an updated HDF5 file.

Example 12: Monitoring Time-Evolution of Rate-
Constant Estimates. In this example, we use the wekap
module of WEDAP to plot kinetics data from WE simulation
results. A primary criterion for monitoring convergence to a
nonequilibrium steady state is the leveling off of the rate
constant of interest. Here, we use an arbitrary target state with
a high heavy-atom RMSD (Figure 2.L). The x-axis is set to
either the number of WE iterations or molecular time, defined
as Nτ, where N is the number of WE iterations and τ is the
fixed time interval of each iteration. The west.cfg file used
with the w_ipa command from WESTPA to generate the
resulting assign.h5 and direct.h5 files used in this
example is provided in the WEDAP GitHub repository.
The direct.h5 file from WESTPA provides state-to-

state flux evolution data. From the Hill relation,35,36 we know
that in a system with states A and B, probability flux from A to
B at steady state is exactly equal to the inverse of the mean first
passage time (MFPT)

| =Flux A B SS
MFPT A B

( )
1

( ) (1)

where the MFPT is the average of the first passage times
observed during the simulation. If we convert the probability
flux units from per τ to per second and adjust for concentration
dependence (for multimolecular systems only), we can
calculate rate constants over time. For equilibrium WE
simulations, the probability flux from A to B is normalized
by the state population of A (Flux(A → B|SS)/PA

eq).37 We can
also plot flux evolution data calculated using the Rate from
Event Durations (RED) scheme38 by including the --red
flag. Plotting functions for rate estimates from history-
augmented Markov state models39 are available in the
msm_we Python package.40
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Uncertainties for observables estimated using a single
simulation are determined as 95% confidence intervals from
Monte Carlo block bootstrapping. For multiple simulations,
95% credibility regions are determined using Bayesian
bootstrapping.41

In this example, we also used a postprocessing function
(--postprocess) to customize our plot from the CLI,
adding a horizontal line as an arbitrary reference rate. This
customization flag is available with all WEDAP tools, and the
input is a user-defined Python function.

Example 13: Creating a Time-Evolution Movie of 2D
Probability Distributions. Because WE data represent an
ensemble of trajectories, it is useful to track the time-evolution
of more than one dimension or feature. One method to do this
is to create a GIF or movie of how two or more features
correlate over the course of a WE simulation.
In this example, we use the heavy-atom RMSD and the

radius-of-gyration from a CA-CTD WE simulation, looping
through the average probability distributions of specified WE
iterations (Video S1). We can customize this GIF by setting
the range of WE iterations (--first-iter and --last-
iter), optionally setting a larger interval between WE
iterations for better performance (--step-iter), setting
the amount of WE iterations to include in each frame of the
GIF (--avg-plus), and providing the GIF file output path
(--gif-out).

Other WEDAP Features. Beyond our set of examples,
other notable features of WEDAP include the following: (i)
multiple input files for wedap, which are automatically
normalized and plotted as long as the data set(s) specified exist
in all input H5 files (multiple cMD data files can also be input
with mdap); (ii) wedap and mdap input data can be a
NumPy42 array directly passed to the API or the name of a file
with a .dat, .txt, .pkl, .npz, or .npy extension; (iii)
the WE trajectory ensemble can be filtered in wedap to
generate probability distributions of only successfully recycled
events (--succ-only); and (iv) the WE basis states can
also be filtered in wedap to only plot the probability
distributions of trajectories from specific starting states
(--skip-basis).
With the exception of the WE evolution plot (Figure 2.A),

most wedap plots can be made using cMD data instead of
WE data generated using WESTPA. Although many of the
commands and uses for mdap were not demonstrated here,
examples can be found on the WEDAP demo Jupyter
notebook. In future work, we will extend WEDAP to include
a module for rate-constant calculations and plots of cMD data,
allowing easy comparisons between WE and cMD simulations
in terms of the time-evolution of a rate estimate.

■ CONCLUSIONS
We have presented WEDAP, a software package for plotting
observables of interest from both WE and conventional MD
simulation data. Based on WE and cMD simulation data from
conformational sampling of the HIV-1 capsid protein CTD
dimer, we demonstrated the use of WEDAP for generating
various plots, including simple 1D probability distributions and
animated time evolutions of 2D probability distributions.
While we originally implemented WEDAP for generating
probability distributions from WE simulations, many additional
features have been introduced, and ongoing development for
other types of plots and simulation data sets is expected to
continue.

Overall, WEDAP is designed to provide more accessible data
analysis and plotting tools to the simulation community with
modularity that allows for flexible usage and easy feature
development. Accessible plotting capabilities for many differ-
ent data sets should facilitate data exploration and simulation
monitoring to identify trends and relationships within both
WE or cMD data. We note that WEDAP is already being used
by the simulation community,13,43,44 and we expect to continue
maintenance and development in parallel with the WESTPA
software package. We hope that WEDAP can eventually be
adapted to benefit other enhanced sampling commun-
ities,1,45−50 only a few of which have companion tools for
data visualization.22

■ ASSOCIATED CONTENT
Data Availability Statement
All plotting tools used are available in the open-source
WEDAP software package, with source code available on
GitHub https://github.com/chonglab-pitt/wedap and depos-
ited under DOI 10.5281/zenodo.11051656. WEDAP is also
available on PyPI https://pypi.org/project/wedap and can be
installed using PIP pip install wedap. The open-source
WESTPA software package was used to generate the example
WE simulation data and is available on GitHub: https://
github.com/westpa/westpa. The WESTPA HDF5 data files,
cMD data files, and Jupyter notebook needed to reproduce all
plotting examples can be found in the WEDAP GitHub
repository. Full API documentation and more examples for
using WEDAP can be found on the documentation web page:
https://darianyang.github.io/wedap.
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probability distribution from Example 13 (MP4)
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