
A LiveCoMS Tutorial

A Suite of Tutorials for the WESTPA
Rare-Events Sampling Software
[Article v1.0]
Anthony T. Bogetti1*, Barmak Mostofian2*, Alex Dickson3*, A J Pratt1*,
Ali S. Saglam1*, Page O. Harrison1*, Joshua L. Adelman4, Max Dudek1,
Paul A. Torrillo1, Alex J. DeGrave1,5, Upendra Adhikari2,6, Matthew C. Zwier7,
Daniel M. Zuckerman2, and Lillian T. Chong1

1Department of Chemistry, University of Pittsburgh, Pittsburgh, PA; 2Department of

Biomedical Engineering, Oregon Health and Science University, Portland, OR;

3Department of Biochemistry and Molecular Biology, Michigan State University, East

Lansing, MI; 4Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA;

currently unaffiliated; 5Current address: Paul G. Allen School of Computer Science and

Engineering, University of Washington, Seattle, WA; 6Current address: Department of

Chemistry, Missouri Valley College, Marshall, MO; 7Department of Chemistry, Drake

University, Des Moines, IA

This LiveCoMS document is
maintained online on
GitHub at
https://github.com/westpa/
westpa_tutorials; to provide
feedback, suggestions, or
help improve it, please visit
the GitHub repository and
participate via the issue
tracker.

This version dated
November 20, 2019

Abstract The weighted ensemble (WE) strategy has been demonstrated to be highly efficient

in generating pathways and rate constants for rare events such as protein folding and protein

binding using atomistic molecular dynamics simulations. Here we present five tutorials instructing

users in the best practices for preparing, carrying out, and analyzing WE simulations for various

applications using the WESTPA software. Users are expected to already have significant experience

with running standard molecular dynamics simulations using the underlying dynamics engine

of interest (e.g. Amber, Gromacs, OpenMM). The tutorials range from a molecular association

process in explicit solvent to more complex processes such as host-guest association, peptide

conformational sampling, and protein folding.

*For correspondence:
ltchong@pitt.edu (LTC); zuckermd@ohsu.edu (DMZ)

*
These authors contributed equally to this work

1 Introduction and Scope of Tutorials
WESTPA (The Weighted Ensemble Simulation Toolkit with Par-

allelization and Analysis; https://westpa.github.io/westpa) [1]

is an open-source, highly scalable software framework for

carrying out extended-timescale simulations of rare events

with rigorous kinetics using the weighted ensemble (WE) strat-

egy [2]. Key features of WESTPA, written in Python, include

(i) a general interface that enables interoperability with any

Received: 18 June 2019

Accepted: 26 September 2019 1 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://github.com/westpa/westpa_tutorials
https://github.com/westpa/westpa_tutorials
ltchong@pitt.edu
zuckermd@ohsu.edu
https://westpa.github.io/westpa
https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

dynamics engine (e.g. Gromacs [3], Amber [4], OpenMM [5]);

(ii) an optimized, parallel implementation of the WE strategy

that exhibits perfect scaling out to >4000 CPU cores; (iii) an ef-

fective suite of tools for analysis of the millions of files created

by each simulation; (iv) full extensibility for enhancements to

simulation protocols and analysis tools; and (v) portability of

the software on any Unix-like computing resource, including

typical computing clusters and supercomputers. The WESTPA

software also includes plugins for using a WE-based string

method [6] and a WE strategy utilizing hierarchical Voronoi

bins (WExplore) [7]. The WESTPA software package has en-

abled efficient atomistic simulations of host-guest associa-

tions [8], protein binding processes [9, 10], and protein folding

[11]. This efficiency (relative to standard “brute force” simula-

tions) has been demonstrated to increase exponentially with

the effective free energy barrier of the rare event [12].

Here we present a suite of five tutorials for the WESTPA

software in order of difficulty from basic to advanced, in-

cluding a tutorial involving the suite of analysis tools. These

tutorials can also be found online in the WESTPA GitHub

repository (https://github.com/westpa/westpa_tutorials/wiki).

Learning objectives and expected outcomes are outlined for

each tutorial. This set of tutorials is restricted to applications

in molecular dynamics (MD) simulations, but WE and WESTPA

are applicable to arbitrary stochastic simulations [13–15].

After completing the Basic Tutorial involving the simula-

tion of Na
+
/Cl
-
association, the user should be able to:

1. Understand the main simulation directory layout

2. Choose a progress coordinate

3. Choose an appropriate binning scheme

4. Prepare input files

5. Monitor a simulation

After completing the Intermediate Tutorial involving the

conformation sampling of a p53 peptide fragment, the user

should be able to:

1. Set up a two-dimensional progress coordinate

2. Monitor this coordinate as the simulation progresses

3. Evaluate whether the binning scheme is effective

4. Combine and create bins “on-the-fly”

5. Store and access auxiliary data

After completing Advanced Tutorial 1 involving the fold-

ing/unfolding of the chignolin mini-protein the user should

be able to:

1. Use brute force simulations to identify appropriate ini-

tial and/or target states

2. Obtain the probability flux into the target state of a

WESTPA simulation, convert it to a mean rate constant,

and interpret the results

3. Approach larger, more biologically relevant events (like

protein folding) with a WE-oriented mindset

After completing Advanced Tutorial 2 involving K
+
/18-

crown-6 ether association and WExplore plugin, the user

should be able to:

1. Install and use the WExplore-WESTPA plugin

2. Define and implement their own distance metric for use

in a WExplore simulation

3. Determine appropriate values for WExplore-specific pa-

rameters for their system of interest

4. Analyze simulations by inspecting properties of the

Voronoi “images”

After completing the Analysis Tutorials, the user should

be able to:

1. Calculate progress coordinates using an external analy-

sis suite (MDTraj or MDAnalysis)

2. Automate analysis and interactively explore WE simula-

tion data using the w_ipa tool
3. Create a movie of how a probability distribution evolves

with time

The tutorials will use an array of different dynamics pack-

ages to showcase WESTPA’s interoperability. In each tutorial,

all of the required packages and auxiliary programs (for analy-

sis etc.) are freely available and documentation can be readily

found online. The version of each software package is also

provided in each tutorial’s “computational requirements” sec-

tion.

1.1 Using WE Concepts in MD Simulation
The WE strategy organizes an array of MD trajectories strate-

gically in configuration space to target quantities of interest

which would not be calculable via standard MD. Typical exam-

ples are the calculation of pathways and rate constants for

conformational and binding processes. The overall WE strat-

egy can be embodied in a wide variety of specific algorithms.

The WESTPA software can be considered a direct descendent

of the Huber and Kim algorithm [2], although the idea to

use trajectory “splitting” and reweighting had been devised

decades earlier for research at Los Alamos [16].

As sketched in Figure 1, the essence of WE is to use a statis-

tically unbiased, weighted sample of MD trajectories in such a

way that a higher density of trajectories is deployed in regions

of configuration space where sampling would otherwise be

rare in standard MD. These rare regions might be (free) ener-

getic barriers or merely distant regions of configuration space.

The trajectory weights, which are fundamental to WE, result

from the statistical resampling procedures which either prune

or replicate trajectories according to rules implemented in

WESTPA [1, 2, 17]. The rules typically generate trajectory

2 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://github.com/westpa/westpa_tutorials/wiki
https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

Figure 1. Weighted ensemble MD simulations. Trajectory segments
(blue) are fairly evenly distributed in configuration space, and hence

enhance sampling of normally undersampled regions of configu-

ration space, such as free energy barriers. In this schematic, the

free energy or potential of mean force is shown as a function of an

arbitrary progress coordinate. Darker color denotes higher weight tra-

jectories, which will occur at free energy minima and regions initially

seeded with trajectories and probability.

replicates—which will diverge upon additional simulation us-

ing a stochastic thermostat or dynamics—in under-sampled

regions while pruning trajectories that occur in over-sampled

regions.

Procedurally, WE runs a large number of ordinary, unbi-

ased MD trajectory segments in parallel, with each segment

halted and examined after a short interval of time (e.g. 1-

100 ps, see Table 1) called τ . After each interval, some tra-

jectories are replicated and some are pruned according to

user-specified parameters - see below. This in turn triggers

automated adjustment of the weights to complete the resam-

pling process. The remaining trajectories are then continued

for another τ interval.

The rules for resampling trajectories without bias are ex-

tremely flexible [17] and numerous possibilities are imple-

mented within the WESTPA software. Typically, WE simula-

tions rely on “bins,”which are defined regions of configuration

space for which the user defines a target number of trajec-

tories [2]. In WESTPA, bins can be constructed from simple

one or two-dimensional “progress coordinates”, a hierarchical

nesting of bins inside of other bins, Voronoi cells, or the WEx-

plore hierarchical Voronoi strategy [1, 7]. Strictly speaking, it

is worth noting that bins are not required to perform WE-like

resampling [18].

Each WE simulation ultimately yields an ensemble of tra-

jectories, from which different types of information can be

extracted. Each trajectory which makes a full transition be-

tween states of interest, say from A to B, yields an ordered

set of configurations which can be analyzed for structural

changes and for the sequence of events. The full weighted en-

semble of trajectories, if clustered into pathway groups, can

provide information on the relative importance of different

pathways [19]. If WE was performed with a “recycling” condi-

tion where trajectories reaching B are fed back to A, then the

rate constant for the process can be estimated from the prob-

ability flux arriving to state B if the simulation achieves steady

state and hence constant flux [20, 21]. If a WE simulation

does not achieve steady state, it is still possible in principle to

estimate rate constants using a non-Markovian analysis, also

called a history-augmented Markov State Model [11, 22, 23].

1.2 Prerequisites
1.2.1 Background Knowledge and Experience

The WESTPA software is not intended for total beginners in

molecular simulation. A prerequisite for all of WESTPA tutori-

als presented here is that users already have extensive expe-

rience with running standard molecular dynamics (MD) simu-

lations using the underlying dynamics engine of interest (Am-

ber, Gromacs, OpenMM, etc.). In fact, we recommend running

multiple short, standard simulations prior to applying the WE

strategy in order to (i) ensure that the system is prepared and

the dynamics are propagated according to best practices (e.g.,

see [24]), (ii) identify potential progress coordinates and other

observables that may be worth monitoring during the WE sim-

ulation, (iii) determine an initial definition of the target state,

and (iv) estimate storage needs for your eventual WE simula-

tion and the ns/day that can be generated for your system. It

is also important to identify sources of validation for your sim-

ulation (e.g., from experiment and/or standard simulations)

and to be familiar with the estimation of statistical uncertainty

in the computed observables, including those used for vali-

dation ([25]). We highly recommend that new users read the

WE overview (https://www.csb.pitt.edu/Faculty/zuckerman/

we-overview.pdf) as well as a recent review article [21]. In addi-

tion, new users are encouraged to search the WESTPA mailing

list (https://groups.google.com/forum/#!forum/westpa-users)

for possible solutions or to submit questions/issues to the

mailing list.

1.2.2 Software Requirements

The WESTPA software requires Python and a number of stan-

dard Python scientific computing packages. All required soft-

ware is available through the Anaconda Python distribution,

which also provides the preferred mechanism for obtaining

and installing WESTPA itself. The software can be used on

any Unix operating system, including academic clusters and

supercomputers. The installation of WESTPA is streamlined

by an Anaconda conda install recipe that enables WESTPA

and all software dependencies to be installed at the same

time.

In addition, WESTPA will require interfacing with an exter-

nal dynamics engine in order to run WE simulations. Exam-

3 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://www.csb.pitt.edu/Faculty/zuckerman/we-overview.pdf
https://www.csb.pitt.edu/Faculty/zuckerman/we-overview.pdf
https://groups.google.com/forum/#!forum/westpa-users
https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

ples of dynamics engines that can be used (all free of charge),

and the versions used are included before each tutorial in

this manuscript.

1.2.3 Hardware Requirements

The highly scalableWESTPA software is particularly well-suited

for high-performance computing (HPC) clusters, including

those at academic institutions or supercomputing centers.

Much of the computing effort is independent (i.e. highly par-

allelizable) with only a small amount of data being transferred

to a central process at the end of each WE iteration. Further-

more, the amount of memory per computing node need only

be sufficient for the underlying dynamics engine, e.g., ~1 GB

per CPU core for atomistic MD simulations.

The two major computing hardware considerations for

large-scale WESTPA simulations are (i) the number of available

processors, and (ii) the amount of disk storage in the scratch

(working) space. Further details about these requirements

are provided below.

Number of Processors. WESTPA can be run on even a
single processor, but the ideal scenario is to use the same

number of processors— all with the same processor speed

— as the number of trajectories you are simultaneously run-

ning at any point in time; in this way, all trajectories that are

being run can be completed at the same time. If the ideal

number of processors is not available, we suggest requesting

a number by which the number of trajectories at any point

in time is divisible. These are not strict requirements, but

following these guidelines will ensure the most economical

use of computer time possible.

Storage Requirements. To estimate the storage require-
ment for your WE simulation, we suggest running a single MD

simulation for length τ , estimating the maximum number of

trajectories you will generate for any WE iteration (number of

bins multiplied by number of trajectories per bin), and esti-

mating the number of WE iterations you will need to converge

the observable of interest. This results in the maximum total

number of trajectories per simulation, which can be used to

estimate the total storage requirements (both number of files

and aggregate storage space). Ideally, the scratch space of

your computing cluster should be sufficiently large to tem-

porarily store the entire simulation, which makes the analysis

easier in the not-unlikely event you need to reanalyze each

trajectory. Regardless of your estimate, having an off-cluster

storage option that can store the simulation in case you need

to extend the simulation further on the cluster would be ideal.

Also, make sure that you are not exceeding any limits on

the total number of files a user can have on your computing

cluster.

As an example, we present the hardware requirements of

our largest-scale WESTPA simulation to date, which involved a

protein-protein binding process in explicit solvent. To enable

convenient analysis of this simulation, the scratch directory

of a computing cluster would ideally allow for 15 TB of disk

space to store trajectory coordinates for the entire system,

including explicit water molecules, checkpoint files for contin-

uing trajectories, and other files required for analysis. If the

scratch space is much less than this amount (e.g. 2 TB), we

recommend separately tarring and archiving each WE itera-

tion, keeping the last five WE iterations untarred, and moving

the archived files to local storage. This strategy enables one

to restart a WE simulation from the last few iterations if neces-

sary. We realize that this protein-protein binding simulation is

an extreme use case, but nonetheless, this scenario highlights

the importance of allocating the necessary storage space for

more typical use cases.

We note that most distributed storage filesystems used on

large clusters (e.g. Lustre or GPFS) do not distribute metadata

(file size, modification time, etc.) processing, and this central-

ized treatment of metadata can become a "choke point" for

WESTPA simulations. In the worst case, a poorly-configured

WESTPA simulation can result in denial of service to other

users. There are no viable alternative file systems at this time.

Fortunately, a simple remedy exists. The burden of running

WESTPA simulations on these distributed filesystems can be

substantially reduced by using the full pathnames to all exe-

cutables called by any WESTPA process (for example, writing

/usr/bin/awk instead of simply awk).

1.2.4 Running WESTPA on a Computing Cluster

Prior to running full-blown WESTPA simulations on your de-

sired computing cluster, it is advisable to consult with the

system administrator about how best to run your simulation

on the cluster. In addition, test simulations consisting of a few

WE iterations should be run using the development queue to

gauge if the I/O is too frequent for the cluster and to optimize

the execution of your simulation (see Table 1 for examples of

computing resources that have been suitable for various WE

applications). Sample shell scripts for executing WESTPA sim-

ulations on various computing resources have been provided

for the Intermediate Tutorial (Section 6.2) on GitHub.

2 Workflow of Running a WE Simulation
An overview of the workflow for running a WE simulation us-

ing WESTPA is detailed below. This workflow is only meant to

give a sense of the mechanics and flow of using WESTPA once

your system and WE parameters have already been carefully

chosen. See Table 2 for a summary of all files mentioned in

this workflow.

Overall Flow
Ready: The purpose of this step is to ensure that the

chosen WE parameters are correctly specified in the proper

4 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

Table 1. WE parameters used for notable applications in the literature. The asterisk (*) indicates an application with I/O operations that is too
frequent for supercomputers and gaming GPUs.

Rare-event
process

System and size WE Parameters Suitable computing
resources

millisecond

protein

folding [26]

NTL9 protein in generalized Born (GB)

implicit solvent with low and high

solvent viscosity (collision frequency

of 5 ps
-1
and 80 ps

-1
, respectively):

627 atoms

1D progress coordinate: Cα RMSD

from the folded structure.

Binning: 53 bins, that are finely spaced

for near-folded structures (35 bins

for 1.0 Å < RMSD < 4.4 Å) and more

coarsely spaced for more unfolded

structures:

(12 bins for 4.4 Å < RMSD < 6.6 Å and

5 bins for 6.6 Å < RMSD < 10.2 Å).

τ = 10 ps; 1200 WE iterations;

4 trajectories/bin

Professional-

graphics-

programming GPUs
*

(e.g. NVIDIA GTX

1080)

peptide-

protein

association

[9]

p53 peptide/MDM2 protein in GB/SA

implicit solvent: 1685 atoms

2D progress coordinate: heavy-atom

RMSD of p53 peptide relative to its

MDM2-bound conformation following

alignment on (i) MDM2 and (ii) itself.

Binning: 16 bins with 0.5 Å widths

along the p53-aligned RMSD and

widths ranging from 0.2 to 2 Å for the

MDM2-aligned RMSD.

τ = 50 ps; 396 WE iterations;

8 trajectories/bin

1600 CPU cores on

a supercomputer (e.g.

XSEDE’s Bridges) or

16 GPUs (e.g. NVIDIA

Tesla P100 GPUs)

protein-

protein

association

[10]

barnase/barstar proteins in explicit

solvent: >100,000 atoms

2D progress coordinate: (i) heavy-

atom RMSD of barstar residues D35

and D39 after alignment on barnase,

and (ii) minimum protein-protein sep-

aration distance. D35 and D39 are

the barstar residues that become the

most buried upon binding barnase.

τ = 20 ps; 650 WE iterations

Binning: 72 bins with coarsely spaced

bins every 1 Å from 10 to 60 Å and

more finely spaced bins every 0.5 Å

from 0 to 10 Å along the RMSD coordi-

nate; two bins along the distance coor-

dinate separated by a bin boundary at

5 Å; fixed total number of trajectories

(1600)

1600 CPU cores on

a supercomputer (e.g.

XSEDE’s Bridges) or

16 GPUs (e.g. NVIDIA

Tesla P100 GPUs)

5 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

Table 2. WEST_SIM_ROOT organization and file explanations

bstates/ directory containing basis states

env.sh set environment variables

init.sh initialize the WESTPA simulation

common_files/ directory containing files for

dynamics (i.e. topologies)

run.sh run the WESTPA simulation

tstate.file define the target state (for steady state

simulations only)

west.cfg specify main WE simulation parameters

westpa_scripts/ directory containing essential scripts

system.py a separate script to define functions or

parameters (optional)

reference/ directory containing reference files for

calculations (optional)

places and that all environment variables are correctly set.

Most of the WE parameters (such as the number of WE itera-

tions, binning scheme etc.) and auxiliary datasets (auxdata;

see Section 6.2) are specified in the west.cfg file. You can
view an example of this file in any of the tutorials below; labels

exist directing where to specify each parameter. More com-

plex binning schemes (such as recursive schemes or schemes

involving functional bin mappers) can be specified in an ex-

ternal file called system.py. A user may also choose to write
functions to this file. Usually, these functions will calculate

progress coordinate or auxiliary data and are more complex

than usual.

The environment is set up in the env.sh file. The loca-
tion of themainWESTPA simulation directory (WEST_SIM_ROOT)
and the location of dynamics/analysis programs are placed

in your system path. When setting up WESTPA on a clus-

ter, program modules will be loaded in the runwe.slurm file
instead of the env.sh file (see Section 6.1 and view the cluster-
specific runwe.slurm file). It is a best practice to define vari-
ables in env.sh for each program that will be called. These
variables should contain the full path to that program (such

as CPPTRAJ=$(which cpptraj), see Section 4.3 for more infor-
mation). Always source env.sh before trying to run WESTPA
just to see if any errors appear relating to programs not being

found. If errors are present, edit env.sh to specify the proper
locations of programs and try to source it again. The goal

of this action is to make sure that any issues with your envi-

ronment are fixed before continuing so that troubleshooting

becomes much easier later on.

Set: After setting up the system environment and specify-
ing the WE parameters, users will need to initialize the simula-

tion. This involves running the init.sh script, which will take
an initial structure (or structures), calculate a progress coordi-

nate (pcoord for short, this is also the name used in WESTPA

datasets pertaining to the progress coordinate) value for that

structure and then place that structure in the appropriate

bin. The init.sh file is also the location where users can
specify whether the simulation will be run under equilibrium

or steady-state conditions.

Place the starting structure(s) in the bstates/ directory.
The structure should be a coordinate file giving the starting

configuration of your system (e.g. Amber restart file). The

bstate.file tells WESTPA which structure to use as the initial
structure for the simulation. If you have only one structure,

this file will contain the name of that structure only; if you

have more than one structure, bstate.file should list each
structure along with its associated statistical weight. An ex-

ample of the latter is a representative ensemble of unbound

protein conformations in a binding process that could be

generated using a prior equilibrium WE simulation [9, 10].

Next, specify whether the simulation will be run under

equilibrium or steady-state conditions. This specification is

made in the init.sh file. Including a TSTATE_ARGS argument
for w_init will signal for WESTPA to run under steady state
conditions. The tstate.txt file in the main simulation di-
rectory is where the progress coordinate value of the target

state is specified. If the TSTATE_ARGS argument is absent, the
simulation will be run under equilibrium conditions. See the

tutorials in Sections 6.1 and 6.2 below for examples of how

init.sh will change from running a steady-state simulation
versus an equilibrium simulation (respectively).

Running init.sh will cause WESTPA to execute

get_pcoord.sh, which is a script located in westpa_scripts/.
This script will give an initial progress-coordinate value for

the basis state(s) (located in bstates/) to WESTPA.
Users will need to modify get_pcoord.sh to either read or

calculate the progress coordinate for their particular simula-

tion. For instance, in the Basic Tutorial, the distance between

the Na
+
and Cl

-
ions is used as the progress coordinate. The

get_pcoord.sh file for that tutorial simply prints the contents
of an already-existing file (pcoord.init, which already con-
tains the calculated value) and passes that value to WESTPA.

However, get_pcoord.sh can also perform the calculation for
the basis state, as in the Intermediate Tutorial. However this is

done, a value (or values) for that progress coordinate should

be echoed into WEST_PCOORD_RETURN, a WESTPA variable con-
taining all of the progress coordinate values for the entire

simulation (see Section 6.2 for the added considerations if a

two-dimensional progress coordinate is used).

If errors appear while trying to initialize the simulation,

the following troubleshooting methods are recommended.

First, make sure that the command entered in get_pcoord.sh
properly calculates the progress coordinate. Copy the initial

structure from the bstates/ directory to another directory

6 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

and run the command. If the command does not work, make

sure the proper atoms and residues are selected and then try

running the command again. If the command works, make

sure that the calculated value is being successfully echoed

into WEST_PCOORD_RETURN.
To make troubleshooting easier, turn on logging for the

get_pcoord step in the west.cfg file. By setting the location of
the standard output (stdout) and/or standard error (stderr) to

$WEST_SIM_ROOT/get_pcoord.log, you can more closely mon-
itor the output of the get_pcoord.sh script to try to find out
where things are not working.

Go: Running the run.sh script will start a WESTPA simu-
lation. If init.sh was just run, a new simulation will begin
and continue until the number of WE iterations specified

in west.cfg have been completed. If the simulation was

stopped after previously running, run.sh will continue the
simulation from the point at which it was stopped. If WESTPA

is being run on a cluster, then this script will take the form

of a Slurm or other submission script (such as runwe.slurm,
see the Basic Tutorial in Section 6.1 for an example). WESTPA

will propagate dynamics for one trajectory segment (of length

τ) and calculate progress coordinate values (and all auxiliary

data) for the propagated structure(s). After completing a

trajectory segment, WESTPA will combine and replicate trajec-

tories to maintain the target number of trajectories per bin

(as specified in the west.cfg file). One cycle of dynamics and
combination/replication is referred to as a single WE iteration.

The number of iterations is repeated until the observable of

interest (e.g. rate constant) is reasonably converged.

Running run.sh will cause WESTPA to execute runseg.sh,
which is a script similar to get_pcoord.sh, located in
westpa_scripts/. Users will need to modify runseg.sh to
call the dynamics engine and calculate the appropriate

progress coordinate (and auxiliary data) value(s). Refer to the

runseg.sh file in the Basic Tutorial as an example (Section
6.1). This particular simulation uses Amber’s pmemd program
for dynamics propagation. Running this program requires a

certain input/output syntax that is specific to the dynamics

engine (such as Gromacs or OpenMM). The section of this file

that calculates the progress coordinate will be identical to

that in the get_pcoord.sh file. If a user is collecting auxiliary
data (as specified in the west.cfg file), those values will need
to be calculated after calculating the progress coordinate

value (see Intermediate Tutorial in Section 6.2).

Since runseg.shwill causemany different files to be gener-
ated, it is important to consider howWESTPA is handling these

files, especially when using a shared file space such as on a

cluster. The methods used in the example runseg.sh files
that have been provided in the tutorials below are sufficient

in most cases, but please refer to Section 4 for a discussion

on file management and network traffic.

If there are any errors in the WESTPA setup (e.g. incorrect

number of elements in the pcoord array, misplaced input

files), the simulation will not proceed past the first WE itera-

tion. If this is the case, check the west.log file to see if there
is a good reason for why the simulation is failing. Usually,

however, detailed logging of any errors is available in the

seg_logs/ directory for each segment of each iteration. View
the segment log for a particular segment to see if the dynam-

ics are completing successfully and that the progress coordi-

nate (and auxdata) values are being calculated and passed to

the appropriate variables (such as WEST_PCOORD_RETURN).
If the dynamics fail to start, copy all necessary input files

into an empty directory and run the dynamics manually. If

no errors appear, make sure that your progress coordinate

consists of the proper number of datapoints (as specified

in the west.cfg file). This is determined by the frequency
at which the progress coordinate is being calculated. For

example, if WESTPA expects 50 progress coordinate values

per τ and only receives 10 values, the simulation will fail after

the first WE iteration. Check the dynamics input file (md.in in
the Basic and Intermediate tutorials) to make sure that the

coordinates of your system are being saved at a frequency

that matches the number of specified progress coordinate

values.

If the simulation proceeds to the second iteration, there

should not be any errors in the WESTPA setup. To monitor

the progress of the WE simulation, use w_pdist to generate
probability distributions as a function of your progress coor-

dinate and WE iteration. WESTPA’s plothist command will
allow you to visualize these probabity distributions with a few

different visualization options (see Basic and Intermediate

Tutorials).

Analyze: All data generated from the simulation is con-
tained in one place: the west.h5 file. From this data, users
can track the evolution of progress coordinate values, calcu-

late fluxes into certain bins or states (see the w_ipa analysis
tutorial in Section 6.5.2) and view other statistics pertaining

to the simulation. To visualize a completed trajectory, refer

to the Basic Tutorial and the Advanced Tutorial involving the

visualization of trajectories(Section 6.5.3).

To assess the convergence of the simulation, a user might

want to monitor the evolution of the flux into a target state

as a function of the number of WE iterations by using the

hdfview program to plot the target_flux_evolution dataset
in the direct.h5 file generated by w_ipa (see Basic Tutorial).

3 General Guidelines for Choosing WE
Parameters

Suitable WE parameters such as the progress coordinate,

binning scheme, and resampling interval τ depend on the

7 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

particular system under investigation and the particular pro-

cess of interest. Note that all of these WE parameters are

tightly coupled to one another. Below are general recommen-

dations that aim to assist in choosing these parameters. See

Table 1 for examples from the literature. Currently, choosing

WE parameters is something of an art, although the hope

is to automate some aspects of parameter selection in the

future. For now, we suggest what may be considered a semi-

systematic, trial-and-error procedure:

1. Initially, choose the simplest 1D coordinate that would

be expected to capture the slowest relevant motion

along with initial bin spacings, τ value, and number of

trajectories/bin. Choose these initial parameters follow-

ing examples in the tutorials and/or literature, bearing

in mind they likely will require modification.

2. The τ value should be sufficiently long such that at least

one trajectory progresses to the next bin. In addition, a

code scaling test (plot of the time required to complete

a WE iteration vs. τ value) should be carried out for a

range of potential τ values on the intended computer

hardware to identify a τ value that yields reasonable

linear scaling.

3. If your system stops advancing along your progress

coordinate, consider reducing the τ value, increasing

the number of trajectories/bin, and/or using a finer bin

spacing in that region of the progress coordinate while

combining bins from higher probability regions. Note

that bin spacings are arbitrary in WESTPA and the most

efficient bin sizes likely are not exactly equal. Details for

combining and creating bins “on-the-fly” are provided

below in the Intermediate Tutorial (Section 6.2).

4. If none of the above efforts in step 3 are effective

based on a one-dimensional progress coordinate, your

progress coordinate may be missing orthogonal and

relevant slow degrees of freedom. To address this issue,

consider using a two-dimensional progress coordinate

[[9, 10]; Section 6.2] or a “nested” coordinate in which

the progress coordinate switches to monitoring another

observable once a particular value for the initial

observable is reached. Note that additional dimensions

in the progress coordinate greatly increase the number

of bins and hence the cost of the WE run, which is

the motivation for nesting an additional coordinate

in only a subset of the initial bins. You might also

consider binning strategies that are not based on

user-defined coordinates, but instead employ Voronoi

cells potentially in conjunction with a string method

or the WExplore strategy ([7]; Sections 3.2 and 6.4).

The WESTPA community will continue researching the

important topic of self-adjusting adaptive bins. If all of

your best efforts fail to generate transitions, consider

simplifying your system (e.g. coarse-graining the model)

and/or applying methods that involve the introduction

of external forces (e.g. umbrella sampling) to generate

initial transitions that can further inform the choice of

progress coordinate.

3.1 Choosing WExplore-Specific Parameters
WExplore is an algorithm that makes replicating and pruning

decisions in a weighted ensemble framework. We often call

this a “resampler”. WESTPA is a complete software package

for running weighted ensemble simulations, including not

only different resampling algorithms, but also scripts to setup,

run and analyze weighted ensemble simulations. Advanced

Tutorial 2 shows how one can use the WExplore resampler

inside the WESTPA toolkit.

Regions in WExplore are hierarchically-organized Voronoi

polyhedra, which are defined by a set of central points called

“images” (Figure 2). To assign a trajectory to a given region,

the distance from that trajectory to each image is measured,

and the trajectory is assigned to the region with the lowest

such distance. Key parameters in the WExplore method are

the number of levels in the region hierarchy, the spacing be-

tween the images at each level of the hierarchy, the maximum

branching factor of the hierarchy and the choice of distance

metric. Each of these parameters is discussed below. In addi-

tion, factors affecting the optimal number of trajectories are

discussed.

Choice of Distance Metric. Similar to the choice of
progress coordinate in conventional WE, the distance

metric used in WExplore should capture the slow degrees

of freedom that are relevant to the process of interest.

The distance metric could for instance be an RMSD (root

mean squared distance) measurement, but focusing only

on a subset of the system atoms. For instance, a common

distance metric used in ligand (un)binding simulations is

calculated by aligning binding site atoms, and calculating the

RMSD between the ligands, without any further alignment

[28]. Alternatively, a series of N progress coordinates can
be calculated as X = χ1,χ2,χ3, . . . ,χN, and the Euclidean
distance between two progress coordinate vectors can be

used as the distance metric: dij = |Xi – Xj|. Many other
examples are possible, and the researcher is only limited by

their imagination. The distance used does not need to be

differentiable or continuous.

Region Size, Number of Levels, Branching Factor.
Once the distance metric is defined, the best practice is to

run a short, straightforward simulation and observe the scale

of fluctuations. To be effective, the smallest region size (at

the lowest level of the hierarchy) should be just outside the

reach of the typical fluctuations observed in a time period τ .

8 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

−4 −2 0 2 4

−4

−2

0

2

4

0

2

4

6

8

10

12

14

16

x

y

E
n

e
rg

y
 (

k
T

)

Figure 2. Hierarchical Voronoi polyhedra for the ring potential model
system [6, 27]. The blue colors show potential energy minima on the

left and right and shallower minima on the top and bottom. Heavy

lines show the Voronoi boundaries between the largest regions; one

region is defined per local energy minimum. Each of these is broken

up by medium regions (shown with medium-weight lines), which are

themselves broken up by smaller regions (shown with light-weight

lines).

This ensures that the first replication events will correspond

to significant differences between trajectories. At the other

end, the largest regions should be big enough that a set of B
regions can evenly tile the space of interest, where B is the
branching factor. Typically, B is set to 10, which is low enough
to offer a big efficiency boost in region assignment, and high

enough that branch factor overflows (where the simulation

attempts to create a region higher than the branch number)

do not occur early on in the simulation. The optimal number

of levels between the smallest and the largest region sizes is

system dependent. If simulations are routinely getting stuck

on one level for long time periods, this could indicate that the

spacing between levels is too large. If simulations very easily

proceed from one to the next then the spacing might be too

small. It is difficult to know beforehand what the optimal

spacing will be, but suitable parameters can be easily found

using a little common sense and a bit of trial-and-error.

Number of Trajectories. In contrast to conventional WE,
WExplore does not employ a fixed number of trajectories (Nt)

per region. This would be wildly impractical, as the typical to-

tal number of regions is very large (e.g. 10000 for a branching

factor of 10 and a four-level hierarchy). Previous applications

have aimed to choose Nt to be as small as possible, while still

allowing for simultaneous sampling of all states of interest,

with a convenient value being 48, which is nicely congruent

with 4-, 6- and 8-GPU compute servers [29–31]. A larger value

will result in more consistent runs, while a smaller value al-

lows for longer runs and more replicates. In practice we have

found that single WExplore runs show high autocorrelation

regardless of the value of Nt, and that averaging over mul-

tiple replicates is a necessity, both to accurately compute

observables and to estimate their uncertainty.

4 Cluster-Specific Considerations
To take full advantage of WESTPA’s scaling and parallelizability,

users may seek to run the software on HPC clusters. The

tutorials included herein are written with the goal of teaching

new and relatively inexperienced users the basics of using

the software and therefore do not focus on optimizations

pertaining to the code. We recommend that users become

familiar with running WESTPA on a cluster, especially the

cluster-specific issues and considerations that may arise.

4.1 Minimizing the Number of Output Files
It is advisable to minimize the number of output files gener-

ated by your simulation as this reduces the I/O overhead and

will therefore be less taxing on the filesystem of the comput-

ing cluster. We recommend saving only the restart files that

are necessary for continuing trajectories and analysis of the

simulation. If the user needs additional information (e.g. coor-

dinates that have been saved at a greater frequency than the

τ value) contained in certain output files, those files should

of course be kept. To further reduce the number of files, we

suggest separately tarring up the files for each WE iteration.

The resulting tarballs will also facilitate any transferring of

your simulation data to another location.

In some cases such as WE simulations that are run using

GPUs, trajectory segments can complete too quickly, leading

to a bottleneck where the transfer of files over the network

to the local storage of the node is too slow or there are too

many transfers over the network. In such cases, copy over

the data of the entire previous WE iteration as a tarball to the

local storage of the node, run the entire iteration from this

local storage, and copy back the results to the scratch space

in a single tarball. While these transfers over the network will

add some overhead to each WE iteration, they will avoid the

network bottleneck.

4.2 Data Management
A single WE simulation may generate multiple terabytes of

data, presenting a challenge for storage and retrieval of data.

Moreover, using short trajectory segments in WE simulations

commonly results in a large numbers of small files, which are

managed more slowly on some file systems than a smaller

number of large files with the same overall disk size. To

alleviate these potential issues, we recommend the following:

9 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

1. Perform an initial run to monitor data storage and re-

trieval. Note that the initial number of trajectory seg-

ments may be a small fraction of the amount that would

be generated in the eventual production run.

2. Delete unnecessary files as each trajectory segment is

simulated (see example runseg.sh files in the Basic and
Intermediate Tutorials). Unnecessary files may include

input files, log files from analysis tools, and raw text

output files from analysis tools. Often, useful data from

log files (e.g., temperature from an MD simulation) may

be extracted from the log files and saved as auxiliary

data to the WESTPA data file (west.h5 file), which stores
data more efficiently than raw text.

3. Tar and optionally compress data from each WE itera-

tion. This strikes a balance between excessive file count

and excessive file size, either of which is typically sub-

optimal for long term storage, especially on tape sys-

tems that may not guarantee the integrity of large files.

4. Consider saving coordinates for only the solute atoms

of your system to an H5 file.

4.3 Minimizing Network Traffic Across
Multiple Computing Nodes

Given the large scale of a WESTPA simulation, it is advisable

to limit the number and frequency of network operations (e.g.

I/O operations and file transfers from the local disk to the

global filesystem). We recommend the following strategies

for reducing network traffic:

1. Perform a code scaling test to identify an appropriate τ

value (see Section 3 above).

2. Set environment variables to the full pathnames of re-

peatedly used programs (e.g. analysis tools used to

calculate progress coordinates; see Basic Tutorial be-

low).

3. Copy repeatedly accessed files (e.g. reference struc-

tures and analysis scripts) to local scratch space and

temporarily write the output files to this scratch space.

After each trajectory segment of length τ completes, tar

the output files, and copy the tarred files to the globally

accessible filesystem using rsync.

4.4 Advice when Using GPUs
If your WE simulation has extremely frequent starting up of

simulation segments, your simulation may overheat gaming

GPUs and potentially damage the hardware. For example,

folding simulations of the NTL9 protein in implicit solvent with

a τ value of 15 ps resulted in such issues on gaming GPUs

(i.e. NVIDIA GTX 1080Ti GPUs) while the same simulations

have no such issues on professional-graphics-programming

GPUs. Coarse-grained simulations (residue-level models and

coarse-grained) with high I/O are also problematic on gaming

GPUs.

5 Uncertainty Quantification and
Monitoring of Convergence

Although they can report on much longer timescales, WE

calculations still have limitations analogous to those of con-

ventional MD simulations – namely, force field inaccuracy and

inadequate sampling. Assessing convergence requires care,

as noted below. Even if sampling is adequate, as with any

simulation result, error bars are required to set the results in

context because there is always a finite range of results which

are predicted in any stochastic calculation [25]. Error analy-

sis is particularly challenging because WE results ultimately

depend on a large number of trajectories which typically are

significantly correlated with one another due to repeated

replication (“splitting”) events. Over the years, different error

analyses have been employed [9, 26, 32]. Here we give a brief

overview of current practice.

The primary recommendation is to perform multiple, fully

independent WE simulations when possible. To understand

the variation intrinsic to WE sampling, we suggest performing

these runs from identical starting states. The data from these

runs will not go to waste, as it can be combined for estimating

observables, convergence, and error bars. When multiple

runs are not feasible for a large-scale application, a sufficiently

large number of trajectories/bin (at least 4 trajectories/bin)

should be used to increase the chances of obtaining a diverse

ensemble of pathways. To further enhance the diversity of

the pathways, we recommend starting the simulation from

multiple starting states when that is physically appropriate

such as in protein binding. We note that a single run with a

large number of trajectories/bin (4-50 trajectories/bin) has

been shown to be more efficient in calculating rate constants

than multiple runs with a small number of trajectories/bin (i.e.

< 4 trajectories/bin) for molecular association/dissociation

systems [33].

We focus here on understanding uncertainty in rate-

constant estimation. First, there is the issue of “convergence”:

how much time is required to obtain a result without

systematic bias that is governed only by statistical noise?

In a typical simulation started in a single state (A), the rate

constant into a target state B is estimated by the steady-state

probability flux into B – i.e., the amount of probability arriving

per unit time as sketched in Figure 3. However, there is a

transient regime before the flux levels off to its steady value,

and it is unknown in advance how long the transient will last.

Of course, one should examine the time-dependence of the

average flux (averaged over all WE runs) by eye, but this is

unlikely to be sufficient. In addition, one can plot the flux as a

10 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

function of some continuous coordinate which progresses

from A to B: in steady state, the flux will be constant along any

such coordinate [23]. Finally, we recommend using a “history

augmented” Markov state model (haMSM) employing very

fine bins/microstates, which can be built from the WE data

as a different means for estimating steady-state flux values

which can be compared to those measured directly in WE

simulation [23]. Alternatively, the impact of transient effects

on rate-constant estimation can be reduced by incorporating

the distribution of event durations (excluding dwell time in

the initial stable state) that correspond to pathways captured

by the simulation. This strategy has been shown to yield rate

constants using a fraction of the simulation time required by

the original WE method [34].

Once the transient has completed, if multiple runs were

performed, it is necessary to estimate the uncertainty in the

rate constant based on the group of independent WE runs.

The flux curves from the individual runs, plotted as a function

of molecular time, may vary significantly as sketched in Figure

3. This large variation invalidates typical uncertainty estima-

tion schemes based on the standard error of the mean, and

we therefore recommend employing a Bayesian bootstrap-

ping procedure [35]. This approach appears to be better than

alternative approaches for handling estimates which vary

over orders of magnitude, but we emphasize that the nom-

inal 95% “credibility regions” produced are overly optimistic

and only cover the true mean a much smaller percentage of

the time [35].

6 Tutorials
6.1 Basic Tutorial: Na+/Cl- Association
6.1.1 Introduction

This tutorial involves carrying out aWE simulation of amolecu-

lar association process: Na
+
/Cl- association. After completing

this tutorial, a user should be able to set up a simple WE

simulation using the WESTPA software and develop an intu-

ition for how changes in the WE parameters will influence the

efficiency of sampling a process of interest, thus allowing the

user to choose appropriate parameters for that process.

Learning Objectives. Though we strive to make the
WESTPA software as user-friendly as possible, there are many

system-specific parameters that must be carefully specified.

The purpose of this basic tutorial is to introduce a new user

to WESTPA and have that user become familiar with the flow

of setting up and running a WE simulation.

Specific learning objectives are:

1. Become familiar with the main simulation directory lay-

out

2. Choose a progress coordinate

3. Choose an appropriate binning scheme

Figure 3. Convergence assessment and error analysis in the face
of large run-to-run variation. The flux of probability into the target

state B computed as a function of continuous molecular time, tmol , is
shown for several independent WE runs (grey). The large variation

among individual runs makes it challenging both to assess whether

the transient period has ended and to construct reliable error bars

(see text). The history augmented Markov State Model (haMSM)

analysis (green lines) provides an estimate of the long-time behavior,

and the Bayesian bootstrap credibility region (red lines) estimates

the average transient behavior.

4. Prepare input files

5. Monitor a simulation

6.1.2 Prerequisites

Users should install the latest version of the WESTPA soft-

ware package through Conda. Installation instructions can be

found on our Github wiki (https://github.com/westpa/westpa/

wiki/Installing-WESTPA). For analysis of simulation data, the

hdfview software greatly facilitates the visualization of large
datasets. We will make use of that program in the ‘Analysis’

section of this tutorial.

Users should have basic knowledge of command line us-

age and the Python programming language. Since WESTPA

is designed to conveniently interface with any external dy-

namics engine, users will also need to have experience using

an MD engine (Amber, Gromacs, etc.). This tutorial will not

provide instructions on how to use those engines; only how to

interface the engines with WESTPA. In addition, a knowledge

of analysis programs (such as Amber’s cpptraj program or
the MDAnalysis software) is necessary and will not be covered

here. This tutorial will go over examples of the various input

files that are necessary for interfacing with WESTPA. This tu-

torial also assumes the user has some knowledge of the WE

strategy, as its basic theory is not discussed herein.

Computational Requirements. A user should set aside
at least 18 GB of disk space. This simulation took ~50 hrs to

complete using 1 Intel Xenon 3.50 GHz CPU core.

11 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://github.com/westpa/westpa/wiki/Installing-WESTPA
https://github.com/westpa/westpa/wiki/Installing-WESTPA
https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

This tutorial uses OpenMM version 7.3 for dynamics

propagation (http://openmm.org/) and MDTraj 1.9.3 for

progress coordinate calculations (http://mdtraj.org/1.9.3/).

System setup and equilibration was performed separately

in OpenMM. A minimum version of 3.1.0 for HDFView is

required for H5 file analysis.

6.1.3 Setting up a WE Simulation Using WESTPA

Overview. WESTPA is run by calling the w_run program from
the command line with the appropriate options. This is nor-

mally done by running the run.sh script from the main simu-
lation directory. The simulation will then run until it has either

completed the number of iterations specified by the user or

has run out of time. Both of these parameters can be ad-

justed. Before a simulation can be run, however, the system

must be initialized by calling the w_init program from the
command line with the appropriate options. This is normally

done by running the init.sh script from the main simulation
directory.

Therefore, assuming the system is set up properly and

all parameters have been properly specified, the WESTPA

simulation can be run with the following at the command line

(throughout our suite of tutorials, the command prompt is

indicated with $, which itself is not part of the commands that

should be entered by the user):

$./init.sh
$./run.sh
Data from a WESTPA simulation will be stored in a file

called west.h5, which is an H5 file that can be opened with
Python’s h5py package or with a graphical interface such as

hdfview.

To monitor the simulation’s progress, we will use the

w_pdist program of WESTPA. This will generate probability
distributions (histograms) as a function of the progress coor-

dinate and will enable the user to view those histograms with

the plothist program.

A WESTPA simulation, even after the requested number of

iterations, may not be “complete.” Completion is assessed by

whether some observable has converged to an expected or

steady value. The choice of this observable is up to the user.

To obtain these observables (such as the flux or rate constant),

one will have to access the data in the H5 file and plot it

using Python’s matplotlib package (or another equivalent
package).

Once a simulation is deemed complete, users can make

use of the WESTPA analysis tools suite of programs, specifi-

cally w_ipa in order to extract relevant data from the H5 file.
The System. To obtain a basic understanding of WESTPA’s

parameters and learn how the software works, we will begin

by studying themolecular association of Na
+
and Cl

-
ions. Our

system will consist of a single Na
+
cation along with a single

Cl
-
anion modeled with Joung and Cheatham parameters [36]

and solvated in a box of TIP3P water molecules [37]. These

ions are initially dissociated at a separation distance of 12 Å.

The systemwas prepared using OpenMM and the appropriate

input files are provided under “westpa_tutorials” on GitHub,

where you will also find a copy of this tutorial’s simulation

directory (basic_nacl). We will not cover how the input files
were generated or the rationale behind choices made when

setting up the system (e.g. force field, water model etc.).

Choosing an Initial State. In looking at the association
of two entities, especially thinking about how to extensively

sample this process, there are some things we want to con-

sider before we begin WE. The first is how our initial state

should look. If we choose to place the ions too close together,

we may only observe one “type” of binding pathway, since the

ions will not have as much time to orient themselves before

binding. In reality, ions are symmetrical and we will not need

this consideration but this would be an issue when determin-

ing how far apart to space, say, a drug and protein system or

two protein binding partners. We also do not want to space

the ions too far apart, as that would unnecessarily increase

the time needed to observe binding events. We will therefore

choose a generous distance of 12 Å.

The coordinates (and velocities) of this starting structure,

bstate.xml, are placed in the bstates/ directory. This is an
OpenMM save-state file, which was saved after equilibration.

This is the file needed to directly resume dynamics. Depend-

ing on the dynamics engine you are using, this file will be

different but will have the same function (for instance, an

Amber restart file would be placed here if one were using

sander to run dynamics). Also in this directory is a file named
bstates.txt. This file contains the name of our basis state
structure and the probability of it being chosen if we want to

sample a variety of initial structures (since we are preparing

only one basis state, that probability is just 1). To more fully

sample the configurational space of some process, it is often

prudent to include more than one initial structure. In that

case, all of those structure files can be placed in this direc-

tory with their file names and probabilities included in the

bstates.txt file.
Files for Dynamic Propagation. Also necessary for run-

ning an Amber simulation are the topology and simulation

input files. Those two files (bstate.pdb and nacl_prod.py)
are placed in the common_files/ directory. This is a catch-all
folder for any files needed while running dynamics. Notice

that our τ value is defined in the nacl_prod.py file, which is a
Python script that runs OpenMM. This is the length of each

WE iteration; so if the MD input script will run dynamics for,

say, 10 ps then your τ value is 10 ps. This number needs to be

carefully chosen depending on your system of interest. For

this simulation, we will use a τ value of 50 ps.

12 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

http://openmm.org/
http://mdtraj.org/1.9.3/
https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

Preparing the System Environment. Next, we will want
to make sure that WESTPA can properly access the MD en-

gine we want to use and set up our simulation environment

properly. These variables are all defined in the env.sh file.
You will need to open that in vim or another text editor and
make sure that your WESTPA environment is being sourced

correctly (only if you are not using the Conda environment)

and that your dynamics environment is being sourced cor-

rectly. It is also advised to set the runtime command variables

for more efficient system calls if applicable.

Equilibrium vs Steady State WE. Now, let’s examine the
init.sh file, which initializes the simulation. In this file, we
can specify whether to run an equilibrium or steady state

simulation. The file in the tutorial directory is set up to run a

steady state simulation. This is specified with the definition of

the TSTATE_ARGS variable and its use in the w_init command.
To run an equilibrium simulation, simply delete those two

lines.

The choice of whether to run an equilibrium vs steady

state simulation will depend on the research question being

asked. Where do we want the system to go? Equilibrium simu-

lations can be efficient in exploring configurational space and

sampling ensembles of conformations. On the other hand,

steady state simulations, where trajectories that reach some

target state are recycled back to the initial state (along with

their trajectory weights), can be more efficient in generating

rate constants, and for exploring pathways towards some

known target state [33].

In our simulation, we do have a specific target state in

mind and we know exactly what it looks like: Na
+
and Cl

-

interacting ionically at a close distance. We will therefore

prepare to run a steady state simulation.

Progress Coordinate, Binning Scheme and τττ value. For
any WE simulation, we recommend choosing a progress co-

ordinate that monitors the slowest relevant motion(s) such

that faster motions will “go along for the ride.” The efficiency

of generating pathways is tightly coupled to the choice of

progress coordinate, along with how you choose to divide up

that coordinate into bins. For the molecular association pro-

cess involving the Na
+
and Cl

-
ions, a logical choice of progress

coordinate would simply be the distance between the two

ions, assuming that the surrounding solvent molecules re-

spond relatively quickly to the positions of the ions. In other

words, we can measure the simulation’s “progress” by how

close the ions are to each other in a particular trajectory.

This will turn out to be a good choice for our system, but for

systems in which the binding partners involve ensembles of

conformations, a pure distance-based progress coordinate

will not be adequate and must be combined with a second

dimension of the progress coordinate that tracks some other

motion of the system.

Now that we have chosen a progress coordinate, we will

need to consider our binning scheme. Imagine a space that

contains all of the possible values of our progress coordinate.

A good place to start is to perhaps define our progress co-

ordinate as ranging from your initial state (basis state) to a

preliminary definition of your target state and divide up this

coordinate into 1-Å wide bins. One way to obtain a prelimi-

nary definition of the target state for the Na
+
/Cl
-
association

process is to subject a model of the associated Na
+
and Cl

-

ions to energy minimization using the same force field that

will be used during the WE simulation and calculate the result-

ing distance between the ions using cpptraj. This distance
ended up being 2.6124 Å, so we will set 2.60 Å as our prelimi-

nary definition of the target state. We recommend choosing

the most strict definition possible for the target state for the

recycling of trajectories in a steady state WE simulation to

enable the use of more lenient definitions after the comple-

tion of the simulation. Make sure to add this number to

tstate.file in the main simulation directory, where your
steady-state target state definition should always be placed.

Back to our bin definitions. If we choose to space our bins

by ones from 2.6 to 12 Å by 1’s (or some similar increment),

this can lead to your simulation stalling. If trajectories can-

not move to the next bin before a round of combination and

replication occurs, the bins may be too large with respect to

the chosen τ value or progress coordinate. It is a good idea,

therefore, to run a short (10-20 iterations) WESTPA equilib-

rium simulation to see how your trajectories are progressing

with the WE parameters you have set. If necessary, adjust the

binning or include an additional dimension to your progress

coordinate.

Here is the preliminary binning scheme we will employ,

which is defined in the west.cfg file:
[0.00, 2.60, 2.80, 3.00, 3.20, 3.40, 3.60, 3.80,
4.00, 4.50, 5.00, 5.50, 6.0, 7.0, 8.0, 9.0,
10.0, 11.0, 12.0, 13.0, 14.0, 15.0, ‘inf’]
Notice how we start at 15 Å (a little bit beyond our initial

value of 12 Å) and increment by ones, but as we get closer to

our preliminary state of 2.60 Å, we start incrementing more

finely. This finer binning will help to collect probability closer

to our target state and promote more binding events.

Other WE Parameters. The following WE parameters are
discussed along with where they are specified in the param-

eter files. First, make sure you have chosen an appropriate

τ value (see Section 3) and that it is properly specified in

your dynamics input file. As mentioned above, the τ value,

along with the number of trajectories per bin, is coupled to

the choice of progress coordinate and binning scheme. We

recommend starting with ~4-5 trajectories/bin. This value

is specified in the west.cfg file as bin_target_counts. Make
sure that the frequency at which conformations are saved

13 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

in your trajectories (as indicated in your dynamics input file,

e.g. md.in for Amber) matches the number of elements in the
pcoord array of the west.cfg file. We recommend running
the simulation for a short time to test the effectiveness of the

WE parameters, setting max_total_iterations to 10 in the
west.cfg file before letting the simulation run to a full 100
iterations.

Trajectory Imaging. Since the replication and combina-
tion of trajectories in a WE simulation depends on the values

of the progress coordinate, trajectories that are carried out

with periodic boundary conditions should be imaged before

calculating the progress coordinate (e.g., after completing

each trajectory segment of length τ). Otherwise, erroneous

values of the progress coordinate may result from parts of

the simulation system drifting outside of the periodic box.

MDTraj, which is used to calculate the distance in this tutorial,

is able to only calculate distances for nearest-image ion pairs

(essentially what Amber does with the autoimage command
in AmberTools’ cpptraj program.)

6.1.4 Initializing the WE Simulation

To initialize the simulation, run the init.sh script as men-
tioned before. You will see a body of text output indicating

that the initialization has completed successfully. We will

briefly present the key features of this script.

As mentioned before, init.sh calls the w_init program,
which in turn, runs a script in the westpa_scripts/ directory
called get_pcoord.sh. This script, in this tutorial, is very sim-
ple. It prints the contents of a file, pcoord.init, and gives
that to WEST_PCOORD_RETURN. The pcoord.init file contains
the progress coordinate value of the basis state, and so this

operation essentially tells WESTPA which bin your basis state

falls into. The pcoord.init file is generated by running the
get_distance.py script in common_files/ on bstate.xml and
redirecting the output into a file named pcoord.init. Initial-
izing your system this way is often a good idea, as it allows

you to test out your particular method of progress coordi-

nate calculation. However, get_pcoord.sh can calculate the
progress coordinate directly (see Intermediate Tutorial), or

run whatever script you need to do so. In fact, get_pcoord.sh
can include any additional commands; this built-in flexibility

allows you to perform operations on your basis states before

beginning the WESTPA simulation.

6.1.5 Running the WE Simulation

To carry out the simulation, run the run.sh script as men-
tioned before. You will not see any output. What run.sh does
is call w_run which, among other things, runs the runseg.sh
script that is in the westpa_scripts/ directory. This script will
run dynamics each iteration, calculate a progress-coordinate

value for the updated structure and then return that value to

5 10 15 20
Na-Cl Distance (Å)

2

4

6

8

10

W
E

Ite
ra

tio
n

0

2

4

6

8

F(
x)

/k
T

[
ln

P(
x)

]

Figure 4. Probabiity evolution of Na+/Cl- association as a function of
interatomic distance and WE iteration. The distribution from your

particular simulation may look slightly different. Observe that at the

beginning of the simulation, the probability is centered around 12 Å

(the initial distance).

WEST_PCOORD_RETURN.
In this tutorial, OpenMM is used to run dynamics (by run-

ning the nacl_prod.py script) and MDTraj is used to calculate
the progress coordinate (by running the get_distance.py
script). If a user wishes to change either the dynamics or

analysis programs, these are the two locations where it will

need to be done.

For an example script for using Slurm to run a job on

a computing cluster, see runwe.slurm. You can adapt this
template script to run WESTPA on your desired cluster.

6.1.6 Monitoring the WE Simulation

We recommend checking the progress of your WE simulation

every 10 iterations or so. This can be done with the w_pdist
program. To use this program, first stop the simulation (it can

be started easily from the point it left off by running run.sh
again) and then call w_pdist:

$ w_pdist
This will produce a new H5 file called pdist.h5. To see

how our progress coordinate is evolving over time, we can

use the plothist program with the evolution option:

$ plothist evolution pdist.h5
This will produce a pdf file called hist.pdf. Open this file,

the contents of which are displayed in Figure 4.

As expected, most of the probability at the start of our

simulation is concentrated around the progress coordinate

value for our initial state (10 Å). As our simulation progresses,

the probabilities fan out in both directions, with most of the

probabilities moving towards larger values and some of the

probabilities nearing our target value of 2.6 Å. To see if your

14 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

simulation has generated some successful binding events

after only 10 iterations, run the following:

$ w_succ
The example simulation had its first successful event after

14 iterations. The output will show (if a successful event

occured) the iteration and segment number in which the first

event occurred (e.g. iteration 14, segment 2).

You can trace this successful trajectory back to the basis

state to obtain a complete trajectory with the w_trace com-
mand. You will need to provide the iteration and segment of

the successful trajectory as options separated by a colon:

$ w_trace 14:2
The output will be written to the file traj_14_2_trace.txt.

That file contains the parents of the successful trajectory all

the way back to the basis state.

6.1.7 Analyzing the WE Simulation

One way to assess the convergence of our simulation is to

determine when the primary observable of interest (i.e. the

flux into the target state) levels off. To monitor the flux, we

will first need to prepare our west.cfg file to analyze the sim-
ulation. This is normally done by adding an analysis module

to the end, which is already present in this tutorial’s files. Use

this as a template for future analyses.

You will see that we create an analysis instance called

TEST and then define bins and states for this scheme. These
bins are strictly for analysis and have nothing to do with our

progress coordinate bins defined earlier. Since we only need

to designate the bound and unbound states here, we define

three bins:

[0.0, 2.6, 10.0, ‘inf’]
The way that state definitions work is that you provide

a progress coordinate in the configurational space and

whichever analysis bin that coordinate is in becomes that

state. For instance, our bound state definition is given by [0],
so whichever bin above that the value 0 falls into will be our

“bound” state. This is the bin from 0 to 2.6. The same goes for

the unbound state (10.0 to infinity). The intermediate state

(2.6 to 10.0) does not need to be defined.

With these states defined we can now analyze how much

probability, in the form of trajectory weight, is entering or

leaving each state using the w_ipa program, which will run two
separate WESTPA tools, w_assign and w_direct. To generate
the H5 files needed to analyze the fluxes, run the following

from the main simulation directory:

$ w_ipa -ao
You will see that a new directory titled ANALYSIS has been

created, inside of which is a subdirectory corresponding to

our TEST analysis scheme that was defined in the west.cfg
file. Inside of this subdirectory are our assign.h5 and
direct.h5 files. The direct.h5 file is where the fluxes are

0 20 40 60 80 100
WE Iteration

0.0

0.2

0.4

0.6

0.8

M
ea

n
Fl

ux

1e 3

Figure 5. Mean flux evolution of Na+/Cl- association as a function
of WE iteration. The mean flux alternatively rises sharply and then

relaxes. These "peaks" correspond to probability crossing into the

target state. Your plot may still not be completely converged after

100 WE iterations.

stored. We can open it up with hdfview and view all of the
datasets.

The target_flux_evolution dataset gives the flux over
time (number of WE iterations) into each state we defined

earlier. To view this dataset, double click on it. The 0th column

corresponds to the flux into state 0, which we defined as our

target state. The iter stop is at the beginning of that iteration,

so if you had a binding event by iteration 10, observe the flux

into our target state. Highlight the “expected” column and

click the plotting button in the upper-left hand corner to view

the flux evolution as a function of 0-indexed iteration.

By iteration 10, the flux has most likely not levelled off,

so our simulation cannot be considered converged. Let’s

continue the simulation for a total of 100 WE iterations and

analyze the resulting dataset. A completed H5 file is included

in the for_analysis/ directory for your convenience. Your
plot should look something similar to Figure 5, which was

generated in matplotlib.
While the flux into the target state has not completely

levelled off, it is much more steady than previously, so we can

stop the simulation here and consider how much longer we

should extend the simulation. For other systems, you may

want to run the simulation longer for better convergence. You

may also want to have additional criteria for convergence.

To visualize a trajectory, one must first identify a continu-

ous series of trajectory segments in each iteration from the

basis state to the target state. This will be given in the w_succ
output along with w_trace, as we have done previously. How-
ever, you will also need to retrieve the trajectory file from

each of those segments and combine them using cpptraj. To

15 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

automate this process, we have provided the amberTraj.sh
script, which can be adapted for other systems. This script

uses the cpptraj program available in AmberTools to extract
the binding trajectory of a successful event. The resulting

trajectory file can be loaded along with the system topology

into the VMD visualization software to generate a movie of

the association process.

6.1.8 Conclusion

Hopefully by this point you have gained a good idea of the

work flow required to set up, run, and analyze a WESTPA

simulation using a simple progress coordinate. If you de-

sire more complex options for your simulations (e.g. multi-

dimensional progress coordinates) and further discussion of

how to choose various simulation parameters, we highly sug-

gest going through the other tutorials to get a sense of how

that can be done.

6.2 Intermediate Tutorial: P53 Peptide
Conformational Sampling

6.2.1 Introduction

Since the WE algorithm aims to fill empty bins in configu-

rational space, WE simulations can be effective in the en-

hancement of conformational sampling [1, 7] as well as the

generation of pathways and rate constants for rare events.

This tutorial will focus on the conformational sampling of a

peptide and instruct users on how to set up and analyze a

simulation involving a two-dimensional progress coordinate.

In addition, we will go over how the binning scheme can be

chosen and adjusted in order to balance efficiency and per-

formance.

Learning Objectives. This tutorial will help users develop
a sense for which progress coordinates may be effective for

conformational sampling of a peptide and how to bin along

those progress coordinates.

Specific learning objectives include:

1. How to set up a two-dimensional progress coordinate

2. How to monitor this coordinate as the simulation pro-

gresses

3. How to evaluate whether the binning scheme is effective

4. Combining and creating bins “on-the-fly”

5. Storing and accessing auxiliary data

6.2.2 Prerequisites

Users should have completed the Basic Tutorial and have

a potential progress coordinate in mind for their system of

interest.

Computational Requirements. This simulation required
at least 10 GB of disk space and ~36 hours to complete (40

iterations) on a 12-core, 2.6 GHz Intel Xeon node. This tutorial

uses AmberTools19’s sander package for dynamics propaga-
tion and the cpptraj package for progress coordinate calcu-
lations (http://ambermd.org/AmberTools.php). AmberTools

is available free of charge.

6.2.3 Adding Another Dimension to the Progress

Coordinate

While a one-dimensional progress coordinate can be effec-

tive for molecular association processes (e.g. Na
+
/Cl
-
in the

Basic Tutorial), a two-dimensional coordinate may be neces-

sary for more complex processes such as peptide/protein

conformational transitions. To add another dimension to

the progress coordinate, we first specify the progress coor-

dinate dimensionality as “2” in the west.cfg file. Next, we
calculate the values corresponding to each dimension of the

progress coordinate and pass the resulting two values at the

same time to WEST_PCOORD_RETURN in both the get_pcoord.sh
and runseg.sh scripts. For example, if the first dimension
of the progress coordinate has a value of 1 and the second

dimension has a value of 5, (1 5) must be passed at the same

time to WEST_PCOORD_RETURN instead of sequentially as 1 and
then 5. This can be done with the paste command in bash
(see example get_pcoord.sh and runseg.sh files). In addition,
the bins will need to be specified as two lists, one for each

of the two dimensions. This is done by adding dashed en-

tries (one underneath the other) in the west.cfg section for
bin definitions. A user may alternatively choose to define a

two-dimensional binning scheme in a system.py file.

6.2.4 Preparing the WE System

The System. We will focus on the conformational sampling
of a 15-residue, N-terminal peptide fragment of tumor sup-

pressor p53 that has been thought to be disordered in its

unbound state and adopts an α-helical conformation upon

binding the MDM2 protein. Simulations were run at 275 K

using the Amber ff14SBonlysc force field [38] and generalized

Born implicit solvent [39]. As in the Basic Tutorial, we will not

go into detail about how the files were generated in Amber

or the decisions made in setting up the system with Amber.

Choosing an Initial State. Our WE simulation will be
started from the MDM2-bound conformation of the p53 pep-

tide. In particular, coordinates for the peptide conformation

will be extracted from the crystal structure of the MDM2-p53

peptide complex [40]. This α-helical conformation of the pep-

tide will then be energy-minimized and equilibrated before

subjecting the resulting, solvated system to a WE simulation.

Files for Dynamics. The topology file (P53.MDM2.prmtop)
and dynamics input file (md.in) can be found in the
common_files/ directory. In the md.in file, it should be
specified that the trajectory segment will be run for a length

that corresponds to a τ value of 50 ps.

16 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

http://ambermd.org/AmberTools.php
https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

Preparing the Simulation Environment. See the corre-
sponding subsection in the Basic Tutorial.

Equilibrium vs Steady State WE. In the init.sh file, ob-
serve that all lines mentioning TSTATE_ARGS have been re-
moved. This signals WESTPA to run an equilibrium WE sim-

ulation in which we do not have a set target state. This is a

good option when the goal of your process is to generate as

many configurations as possible and you have no set target

state in mind.

Progress Coordinate, Binning Scheme and τττ Value. To
extensively sample the conformations of the peptide, we

might define a progress coordinate that monitors the extent

of “unfoldedness” in the peptide using the RMSD of a given

conformation from the initial structure. However, RMSD can-

not differentiate among conformations that have the same

large RMSD values. To further differentiate between such con-

formations, we can include another orthogonal measure of

unfoldedness such as the end-to-end distance of the peptide.

To determine a suitable binning scheme, we will start with

an upper limit of 10 Å for the heavy-atom RMSD dimension

of the progress coordinate. Spacing the bins along this di-

mension by 1’s may be too large for any transitions to occur

between bins so we opt for a finer bin spacing:

[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8,
2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0,
8.0, 9.0, 10.0, ‘inf’]
We will see how the trajectories progress and adjust ac-

cordingly. Notice that a bin spacing of 0.2 is not maintained

for the entire length, as 50 bins even along one dimension

would result in a very large number of total trajectories (4 tra-

jectories per bin would yield a total of 200 trajectories if all of

the bins are occupied). Furthermore, care must be exercised

in the addition of bins along a second dimension as the total

number of trajectories can “blow up” to an enormous number

of trajectory segments (e.g. 10,000).

To get a feel for how the end-to-end distance evolves in

the simulation, let’s expand out from the initial distance of

28.5 Å with 0.5-Å wide bins in either direction:

[0, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5,
24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28,
28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5,
33, 33.5, 34, 34.5, 35, 35.5, 36, ‘inf’]
Our τ value should allow for successful transitions be-

tween bins of this spacing.

Other WE Parameters. Let’s run our WE simulation with
4 trajectories/bin for 40 iterations. Since the goal here is the

conformational sampling of a peptide and we are running an

equilibrium WE simulation, we do not need to define a target

state.

6.2.5 Tracking the Auxiliary Data

While it is possible to go back after a simulation has run and

calculate some value you wish you had kept track of, it can

be tricky to do so (though possible with a tool called w_crawl
which is not discussed in this guide). We strongly recommend

conducting all relevant analysis during the simulation and

storing the resulting data as auxdata in the H5 file. In our

case, we will calculate and store the φ/ψ backbone dihedral

angles of the peptide as auxdata for each of the sampled

conformations.

To signal for WESTPA to collect auxdata, you will need to

add an auxiliary dataset into the west.cfg file and make sure
it is enabled. See the west.cfg file in the tutorial directory for
an example of how this might look. You can name the dataset

whatever you would like.

Once you have specified the datasets and named them,

you will need to add in commands to runseg.sh that cal-
culate those values and pass them to WESTPA system vari-

ables. The variables will be named WEST_XYZ_RETURN where
“xyz” is the name given to the dataset in the west.cfg file.
This can be treated analogously to the pcoord value and

WEST_PCORD_RETURN.

6.2.6 Initializing and Running the WE Simulation

Make sure that your get_pcoord.sh and runseg.sh files are
calculating the RMSD and end-to-end distance and return-

ing these values to WEST_PCOORD_RETURN. The get_pcoord.sh
script will calculate the initial progress coordinates using Am-

berTools’ cpptraj program from within the script, as opposed
to reading the value from an external file as in the Basic Tu-

torial. The runseg.sh uses AmberTools’ sander program for
dynamics propagation and does so within the script.

6.2.7 Monitoring the WE Simulation (10 Iterations)

Once the simulation has run for about 10-20 iterations, copy

the H5 file and run w_pdist with the copied file. You can
then use plothist to view each dimension of the progress
coordinates separately as the values evolve over the course

of those few iterations:

$ plothist evolution pdist.h5 0 -o hist_dim0.pdf
$ plothist evolution pdist.h5 1 -o hist_dim1.pdf
Where the “0” or “1” after the plothist command is the

progress coordinate dimension (zero indexed). Observe the

two probability distributions in Figure 6.

6.2.8 Adjusting Bin Spacings "On the Fly"

The RMSD has reached a value of 4-5 Å and the end-to-end

distance has reached ~10 Å, which is encouraging progress

for only 10 iterations. Note that most of the probability (and

therefore most of the computation) is still stalled in the ini-

tial states of 1-2 RMSD and 20-25 end-to-end distance. We

17 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

0 1 2 3 4
Heavy Atom RMSD (Å)

2

4

6

8

10

W
E

Ite
ra

tio
n

0
2
4
6
8
10
12

F(
x)

/k
T

[
ln

P(
x)

]

15 20 25 30
End-to-end Distance (Å)

2

4

6

8

10

W
E

Ite
ra

tio
n

0
2
4
6
8
10
12
14

F(
x)

/k
T

[
ln

P(
x)

]

Figure 6. Probability distributions for each of the two progress coor-
dinate dimensions versus WE iteration. The simulation was analyzed

after 10 WE iterations.

can help focus the computing power on the more interest-

ing “edge” conformations by modifying the binning scheme

before continuing the simulation.

In WESTPA, the binning scheme can be updated at any

time since the trajectory weights are independent of the bins

(and progress coordinate). To do so, first stop the simulation

and then adjust the bins in your west.cfg file. Re-start your
simulation by running the run.sh script again and the simu-
lation will continue from where it left off. At the start of the

next iteration, the new bins will have been implemented.

In our case, I would like to focus sampling on higher RMSD

values (3-4 Å) instead of those ~1-2 Å. To do this, I will collapse

the bins from 0 to 1.8 Å and define some more bins past 10

Å:

[0.0, 1.8, 2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0,
7.0, 8.0, 9.0, 10.0, 11, 12, 14, 16, 18, 20, ‘inf’]
For the end-to-end distance, I will add more bins for the

lower distances and collapse bins over 26 Å. We would nor-

mally want to keep these bins over 26 Å but having fewer will

shorten the runtime of this tutorial.

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21,
22, 23, 24, 25, 26, ‘inf’]
The reason we eliminated the initial 0.5 Å spacings is that

this degree of freedom is readily explored in the system.

1 3 5 7
Heavy Atom RMSD (Å)

10

20

30

40

W
E

Ite
ra

tio
n

0

5

10

15

20

25

30

F(
x)

/k
T

[
ln

P(
x)

]

5 15 25 35
End-to-end Distance (Å)

10

20

30

40

W
E

Ite
ra

tio
n

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

F(
x)

/k
T

[
ln

P(
x)

]

Figure 7. Probability distributions for each of the two progress coordi-
nate dimensions versus WE iteration. The simulation was re-analyzed

after 40 WE iterations

6.2.9 Monitoring the WE Simulation (40 Iterations)

After running the simulation for another 30 iterations (for a

total of 40), we obtained the following updated probability

distributions displayed in Figure 7. The completed H5 file is

included in for_analysis/ for your convenience.
The effects of the bin-modifications can clearly be seen

in the case of the end-to-end distribution. No more trajec-

tories with an end-to-end distance >30 Å can be seen after

iteration 10, a result of the choice not to bin over 26 Å in that

dimension.

The end-to-end distance seems to have reached 2-3 Å

around iteration 20. The RMSD plateaued a bit from iterations

20-30 but then proceeded to values around 7 Å.

Two lessons can be learned from these observations. First,

if you do not have bins in a particular direction, you may not

see sampling in that direction. Second, even though the RMSD

coordinate appeared to have stalled around iteration 20-30,

it eventually was able to surmount whatever barrier existed

and attain some higher RMSD values. Patience is key, as a

single trajectory may replicate to become many trajectories if

it crosses into a new bin.

6.2.10 Accessing Auxiliary Data

To access the auxdata from the H5 file, you can open west.h5
in hdfview but this will not allow you really use the data. To

18 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

90 0 90 180
 (Degrees)

90

0

90

180
 (D

eg
re

es
)

0

10
20
30
40
50

Co
un

t

Figure 8. Ramachandran plot showing the occurance of φ/ψ angles
of the second peptide bond for each segment throughtout the course

of the simiulation.

plot all of the dihedrals as a Ramachandran plot in matplotlib
as shown in Figure 8 (actually, we just did so for the second

dihedral, but you could extend it to all if you so desire), you

will need to utilize the h5py package in Python to extract the
auxdata values from the H5 file and then plot them. The

plotting script is included in the tutorial directory.

6.2.11 Conclusion

Users should now be familiar with setting up a two-

dimensional progress coordinate and working with auxiliary

data. These two "tools" will help to expand your repertoire of

WESTPA simulation techniques and give you access to more

complex and informative simulations. Users should also now

be familiar with changing bin spacings “on-the-fly” as well.

6.3 Advanced Tutorial 1: Folding of Chignolin
Mini-Protein

6.3.1 Introduction

Protein folding processes have been challenging to simulate

due to the relatively long time scales involved. In this tutorial,

we will use WESTPA to simulate the folding and unfolding of

the chignolin mini-protein and to calculate the corresponding

rate constants. We will run steady-state WE simulations of

chignolin folding and unfolding processes separately. We will

also compare the results of these simulations with those from

brute force MD simulations, demonstrating the correctness

and potential usefulness of the WE strategy.

Learning Objectives. This tutorial demonstrates how
steady state WE simulations can be used to generate path-

ways and rate constants for both protein folding and unfold-

ing processes.

Specific learning objectives include:

1. How to use brute force simulations to identify appropri-

ate initial and/or a target states

2. How to obtain the probability flux into the target state

of a WESTPA simulation, how to convert it to a mean

rate constant, and how to interpret the results

Prerequisites. Users should have completed the Basic
Tutorial.

Computational Requirements. We note that signif-

icantly more computing time is required for the folding

simulations to yield converged rate constants and hence we

suggest the user should start with the unfolding simulations.

In particular, the WE unfolding simulation required ~53

hours for 1000 iterations on 32 CPU cores of 2.6 GHz Intel

Xeon processors (~5 GB of disk space) while the WE folding

simulation required ~8 days for 10,000 iterations (200 ns of

molecular time) using the same resource (~50 GB of disk

space). To become familiar with setting up and running the

WE simulations, the users can carry out several iterations.

Also, the brute-force simulation described below can be

performed for tens of ns, as we benchmarked this system

to produce ~150 ns per day on one of the above-mentioned

CPUs. Output files for 1000 iterations of the WE unfolding

and 10000 iterations of the WE folding simulations (as well as

for 4 us of the brute-force simulation) can be found in the

corresponding subdirectories. These files should be used for

the analysis procedures outlined below. This tutorial uses

AmberTools19’s sander package for dynamics propagation
and the cpptraj package for progress coordinate calculations
(http://ambermd.org/AmberTools.php). AmberTools is

available free of charge.

The System. The chignolin mini-protein with the se-
quence GYDPETGTWG forms a β-hairpin and folds/unfolds

on a timescale that is accessible to brute force simulations,

which provide a reference data set for comparison with

WESTPA results. The folded chignolin structure (PDB code:

1UAO, [41]), serves as the starting structure for both the

brute-force and WE unfolding simulations. Both dynamics

propagation and simulation analysis are carried out using

the Amber software package. Simulations were run at 275 K

using the Amber ff14SBonlysc force field [38] and generalized

Born implicit solvent [39].

6.3.2 Brute Force Simulations

Overview. As mentioned in Section 1.2.1, it is important
to run multiple, short, brute force simulations prior to using

WESTPA. In the case of chignolin, which both folds and unfolds

on timescales accessible to brute force simulation, brute force

simulations can provide information on defining the unfolded

and folded states.

Running and Analyzing the Brute Force Simulation.
We perform a 4-µs brute force simulation of chignolin and

19 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

http://ambermd.org/AmberTools.php
https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

Figure 9. Cα RMSD vs simulation time for the brute force simulation
of chignolin.

write out coordinates every 20 ps. All files can be found

in the brute_force/ directory. The user can change these
parameters in the MD config file md.in. The simulation can
be submitted with the following command:

$./run.sh This submission script may have to be ad-
justed to the user’s computing platform.

The chignolin Cα RMSD can be computed in the following

way:

$ cpptraj chignolin.prmtop < get_rmsd.in
This command assumes the brute force simulation trajec-

tory as well as the chignolin parameter topology and folded

structure pdb files are all in the current directory.

The output RMSD data file, rmsd.dat, lists the time evolu-
tion of the chignolin Cα RMSD over the course of the simula-

tion (each line corresponds to a frame).

Figure 9 shows the Cα RMSD over simulation time for a

brute-force simulation that started from the folded β-hairpin,

revealing several unfolding and refolding events within 4 µs.

The unfolded and folded states are defined by visual inspec-

tion of the RMSD plot and simulated conformations, which

show a fully formed β-sheet and native hydrogen bonds at

RMSD < 0.5 Å and a disrupted β-sheet with broken native hy-

drogen bonds at RMSD > 4 Å (this pair of RMSD values will also

be used later to define target states in WESTPA simulations).

Note that the (un)folding rate constants will be sensitive to

the state definitions, and defining states is a challenging pro-

cess beyond the scope of this tutorial. Our state definitions

are designed to avoid potential recrossing artifacts in rate

calculations: once a trajectory reaches a state it should tend

to remain there, rather than immediately returning to the

previous state.

According to the Hill relation [42], the rate constant is

exactly the inverse mean first-passage time (MFPT) of the

underlying process, where, for instance, the FPT for unfolding

is the time required to reach the unfolded state (RMSD > 4 Å)

after first folding (RMSD < 0.5 Å). The user can run the follow-

ing to obtain the MFPTs for both the folding and unfolding

processes:

$ python get_mfpt.py rmsd.dat 20e-12 0.5 4.0
The command-line arguments are the RMSD data file, time

interval at which the RMSD values are calculated in seconds,

and threshold RMSD values for the folded and unfolded states

in Angstroms. The rate constant of unfolding is estimated to

be 0.13 x 108 s
-1
(confidence interval: 0.09 x 108 s

-1
– 0.18 x

108 s
-1
) and that of folding is estimated to be 0.71 x 107 s

-1

(confidence interval: 0.44 x 107 s
-1

– 1.24 x 107 s
-1
). Confi-

dence intervals are derived from a Bayesian bootstrapping

procedure [26].

6.3.3 Using WESTPA

Overview. We will carry out separate steady-state WE simu-
lations for the unfolding and folding processes. This strategy

is not only more efficient than equilibrium WE simulations

in estimating rate constants (see Section 6.1.3), but enables

us to set WE parameters for each process (e.g. bin spacing)

in a more process-specific way if needed. The target state of

the folding simulation will be used as the initial state of the

unfolding simulation and vice versa.

Choosing an Initial State. As done for the brute force
simulations, WE simulations of the unfolding process will be

started from the NMR structure of chignolin. WE simulations

of the folding process will be started from an unfolded con-

formation of chignolin (RMSD > 4 Å) that has been generated

by the above brute force simulations.

Files for Dynamics. All files are in the common_files/ sub-
directory of either the WE_folding/ or the WE_unfolding/ di-
rectory.

Preparing the Simulation Environment. See the corre-
sponding subsection in the Basic Tutorial.

Equilibrium vs Steady State WE. Here we will run sepa-
rate steady state WE simulations of the folding and unfold-

ing processes, defining a target state (TSTATE_ARGS) in the
init.sh files.
Progress Coordinate, Binning Scheme and τττ value. As

mentioned above, we will use a one-dimensional progress

coordinate consisting of the Cα RMSD from the folded struc-

ture of chignolin. Although the RMSD with respect to a single

reference structure may not be an ideal coordinate for distin-

guishing between various conformation, it proves sufficient

for our example. Folded and unfolded states are defined

based on maximum and minimum RMSD values, respectively,

that have been sampled by the above brute force simulations.

We will use a bin spacing of 0.2 Å and a τ value of 20 ps. How-

ever, the very first bin for the unfolding simulations is larger

than the regular bin width with RMSD = [0 Å, 0.5 Å] because

any structure with RMSD < 0.5 Å is considered to be in the

folded initial state. Analogously, for the folding simulations,

20 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

the very last bin is larger than the regular bin width of 0.2 Å.

Other WE Parameters. As done in the previous tutorials,
our WE simulations were carried out using 4 trajectories/bin.

The unfolding and folding simulations were run for 1000 and

10,000 WE iterations, respectively, in order to reach a steady

value of the corresponding rate constants.

Initializing and Running the WE simulations. The

init.sh and run.sh files can be found in the correspond-
ing directories for both WESTPA simulations. The RMSD

progress coordinate is calculated and its values returned to

WEST_PCOORD_RETURN.
Monitoring and Analyzing the WE Simulations. To

compute the rate constant for the folding or unfolding

process, we first calculate the mean probability flux into the

target state by running the following WESTPA analysis tool:

$ w_fluxanl
The output is the H5 file fluxanl.h5, which contains the

instantaneous probability flux into the target state for each

iteration. The following Python script calculates, for any WE

iteration, the average rate constant based on the correspond-

ing probability flux arriving in the target state over a preceding

window of molecular simulation times (e.g., over 1 ns):

$ python get_mean_rate.py 20e-12 1e-9
The command-line arguments are the τ value and the

time width for window-averaging. Both arguments are in

units of seconds.

Figure 10 shows the evolution of the average unfolding

rate constant of chignolin as a function of molecular time for

three independent WE simulations. After a few ns, the aver-

age rate constants for all of these simulations have leveled

off and are roughly comparable to that derived from brute

force simulations. One difference between the WE and brute

force simulations is that the former estimates theMFPT based

on the chosen initial structure(s) which may not correspond

precisely to the ensemble of starting structures implicit in

extracting first-passage events from brute force simulations.

Note that a three-fold difference in the rate constants among

the three WE simulations amounts to only ~0.6 kcal/mol dif-

ference in the effective free energy barrier to unfolding (at

the simulation temperature of 275 K).

Figure 11 shows the evolution of the average folding rate

constant for chignolin as a function of molecular time for

three independent WE simulations. Compared with unfold-

ing simulations, the folding simulations require much longer

to reach a converged average rate constant that is in rough

agreement with that from the brute force simulations; we

note that the average rate constant is dominated by the

largest flux. In addition, the folding rate constant exhibits

significantly larger fluctuations, even after the apparent tran-

sient period of the first ~100 ns, indicating that the chosen

bins are less suited for the folding process. During the folding

Figure 10. Estimating the unfolding rate constant of chignolin. The
1 ns window-averaged unfolding rate constant is shown in a semi-

logarithmic plot for three independent WE simulations (black, red,

and green) that were started from the same folded starting structure

(see lower left). The corresponding unfolding rate constant from the

brute force simulation is indicated by the horizontal blue line and its

confidence interval by the shaded region. The molecular time is the

time elapsed, Nτ where N is the number of WE iterations that each

have a length of τ . The aggregate simulation time was on average,

~1.3 µs for each simulation.

process, distinct hydrogen bonds must be formed between

the neighboring anti-parallel strands, and possibly in a spe-

cific order, to eventually reach an RMSD < 0.5 Å. In contrast,

the unfolding process results in faster convergence of the cor-

responding rate constant and likely involves the simultaneous

breaking of hydrogen bonds in order to reach an RMSD > 4 Å.

The resulting WE simulations consist of multiple continu-

ous unfolding or folding pathways that may cover different

regions of configurational space at any given time. To select

for particular pathways (trajectories), we can run the follow-

ing:

$ python get_target_trajs.py 1 10000
The command-line arguments indicate the first and

last iteration number to be considered. The output file

target_trajs.dat has two columns: one with the iteration
number and one with the segment number of the trajectory

that has reached the target state at that iteration. Thus, the

number of rows indicates the total number of generated

events. The iteration and segment numbers can be used

by w_trace to obtain the full path of a particular folding or
unfolding event (see Section 6.1.6).

6.3.4 Conclusion

In this tutorial, you have learned how to apply the WE strategy

to simulate a protein folding process under steady state con-

ditions. The recycling of trajectories at a target state allows

21 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

Figure 11. Estimating the folding rate constant of chignolin. The
20-ns window-averaged folding rate constant is shown in a semi-

logarithmic plot for three independent WESTPA simulations (black,

red, and green profiles) with the same unfolded starting structure

(see lower left). Note the significantly longer molecular and aggre-

gate simulation times for each simulation to obtain converged rate

constants of folding compared to unfolding (see Figure 11). The cor-

responding rate constant from the brute force simulation is indicated

by the horizontal blue line and its confidence interval by the shaded

region.

the generation of a non-equilibrium steady state, to which the

trajectory ensemble converges faster compared to an equilib-

rium ensemble of trajectories. Such steady states trajectories

enable the direct computation of rate constants as described

in this tutorial.

6.4 Advanced Tutorial 2: K+/18-Crown-6 Ether
Dissociation with the WExplore Plugin

6.4.1 Introduction

For many biomolecular systems, it can be difficult to capture

all of the slow motions in one or two collective variables. This

can hinder sampling of the events of interest. The WExplore

algorithm was developed to perform WE sampling in a many-

dimensional space by using a hierarchical binning scheme of

Voronoi polyhedra. This allows a user to broadly explore the

dynamics of their system of interest along many dimensions,

starting from only a single initial structure.

The key quantity to enable this is a distance metric: a way

of measuring the distance between two trajectories at a given

point in time. In order to assign a given trajectory, X , to a
region, this metric is used to calculate the distance from X
to a set of “images” that define the Voronoi polyhedra. The

trajectory X is then assigned to the region whose image has
the smallest such distance. To efficiently assign trajectories to

regions in a high-dimensional space, a hierarchy of regions is

employed: a small set of very large regions tile the full space,

each of which are tiled by a set of smaller regions, which are

themselves tiled by smaller regions, and so on. The WESTPA-

WExplore plugin defines the hierarchical regions on-the-fly;

assigns trajectories to regions; and balances trajectories be-

tween the hierarchical regions. The user only needs to define

the distance metric appropriate for their system and set a

few parameters of the algorithm.

Learning Objectives. This tutorial covers the installation
and use of the WESTPA-WExplore plugin for a simple system:

the dissociation of a K
+
ion from 18-crown-6 ether.

Specific learning objectives include:

1. How to install and use the WExplore-WESTPA plugin

2. How to define and implement a distance metric for use

in WExplore simulation

3. Determining appropriate values for WExplore-specific

parameters for a system of interest

4. Analyzing simulations by inspecting properties of the

Voronoi “images”

Users with some WESTPA experience should be able to

successfully apply WExplore to their system of interest using

their own customized distance metric.

6.4.2 Prerequisites

Users should have completed the WESTPA tutorials above on

Na
+
/Cl
-
and the p53 peptide. Users should have an under-

standing of the WExplore algorithm: how the region hierarchy

is defined; how it progressively discovers regions; and how

the hierarchical balancing algorithm works. Details of the

algorithm can be found in previous work [7].

Computational Requirements. This tutorial requires
500 MB disk space. This simulation takes ~1.5 hours of wall

clock time to complete (50 iterations) using 8 threads of a

4 GHz Intel Core i7 processor. This tutorial uses Gromacs

2016.2 for dynamics propagation and progress coordinate

calculations (http://www.gromacs.org/). Gromacs is available

free of charge.

6.4.3 Installation and Configuration of the

WESTPA-WExplore Plugin

It is necessary to install some other Python packages that

you might not need for standard WESTPA simulations. We

recommend using an Anaconda environment and installing

the packages as follows:

$ conda create -n WESTPA-WExplore westpa scipy
pandas networkx
$ conda activate WESTPA-WExplore
Note that if you are running your WESTPA simulations on

remote nodes, you would have to include the conda activate
command in your env.sh file. To install the plugin, clone the
WESTPA-WExplore repository to a location on your computer:

$ git clone https://github.com/ADicksonLab/

22 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

http://www.gromacs.org/
https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

Figure 12. The K+/18-Crown-6 ether system. The K+ ion is shown as
a pink sphere. Left: top view. Right: side view.

WESTPA-WExplore.git
This will copy files to your machine, located in the

WESTPA-WExplore/ directory. Change to this directory and
install the plugin as follows:

$ cd WESTPA-WExplore/
$ python setup.py install
To test this, go to another directory, and type:

$ python -c ’import westpa_wexplore’
If this runs without an import error, then you are ready to

proceed to the next step!

6.4.4 Preparing the Simulation

The System. This tutorial will use a simple ligand-binding
test system: the dissociation of a K

+
ion from the 18-crown-6

ether molecule (Figure 12), as studied previously [8]. The goal

is to efficiently sample the dissociation of the complex. This

is reminiscent of applications of WExplore to more difficult

ligand dissociation problems, such as the unbinding of the

TPPU ligand from soluble epoxide hydrolase, a process with a

mean first passage time of 11 minutes [31].

Distance Metric. Here we will use a common distance
metric for ligand release processes: the root mean squared

distance of the ligand atoms after alignment to the host bind-

ing site [29, 30, 43]. This captures ligand translation with

respect to the binding site, and (for systems with more com-

plicated ligands) captures ligand rotation as well as internal

degrees of freedom. The information needed to calculate

these distances is the x, y and z positions of the ligand atoms

after alignment to the host molecule. The first step to assign

a walker to a region, then, is to extract this data from the

simulation. This is done by a familiar script: get_pcoord.sh.
The get_pcoord.sh script included in the tutorial reposi-

tory uses a series of bash commands to align a crown ether

molecule to a reference structure (named bound_state.tpr),
and then extracts only the lines that contain the ligand atoms,

saving them in the file indicated by the WEST_PCOORD_RETURN
environment variable. This data is then processed by the

pcoord_loader function in the system.py file, where the x,
y and z data are collected from columns 5, 6 and 7 of the

PDB-formatted file.

This pipeline is rather crude, but effective. Note that

any set of commands that can extract the output you need

(typically, atomic positions) from your simulation output

files will do, but it is necessary that changes that you make

to get_pcoord.sh (which writes to WEST_PCOORD_RETURN) are
compatible with any changes you make to pcoord_loader
(which reads from WEST_PCOORD_RETURN). For instance, one
could avoid PDB files all together, and load final structures

into the pcoord_loader using the Python interface of Amber
or Gromacs.

The next step is to define a function that returns the dis-

tance between two pcoord vectors. This is typically a Eu-

clidean distance, but can be defined in an arbitrary fashion. It

need not be differentiable, or even continuous, to be effective

in a WExplore simulation. The distance function is defined by

eucl_dist in system.py and is passed as an argument to the
WExploreBinMapper function upon initialization of a system
object.

Setting parameters. The set of WExplore-specific param-
eters were discussed above in Section 3.1. Most of these

are set in the system.py file. The sizes of the hierarchical
Voronoi polyhedra are set using a list, passed to the d_cut
argument of the WExploreBinMapper function. This list should
go from largest to smallest, where the number of elements

is the same as the number of levels to the hierarchy. Simi-

larly, the branching factor is set by a list that is passed to the

n_regions argument of WExploreBinMapper. The number of
total trajectories is set by the max_replicas attribute of the
system.

Choosing an Initial State. It is also necessary, upon

initializing the system object in system.py, to define the initial
“image” that corresponds to the first structure used in the

simulation. This is done in lines 35-37 of the initialize
function in system.py and should be changed as necessary
for a given system. The initial PDB file containing the

aligned K
+
coordinates was prepared from the basis state

0 (in bstates/0) using Gromacs in the init.sh script. As
described in BASIS_STATES.single, we are initializing all
trajectories from a single starting structure (“bound_0”) that

has probability = 1.

Other parameters. Other details of simulation parame-
ters are given in the md.mdp file. For instance, the dynamics
timestep (0.002 ps), the number of steps per cycle (1000) and

the output frequency for coordinates, velocities and forces

(100, 100 and 0, respectively) are specified here. Note that

here we are outputting our coordinates 11 times per cycle

(1000 / 100, plus one extra for the endpoint). This must

be consistent with the parameter pcoord_len in system.py,

23 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

which is also set to 11 in our case.

Preparing the Simulation Environment. As discussed
previously, make sure to modify the env.sh file to reflect the

installation locations of WESTPA, Gromacs, etc. on your ma-

chine. Additionally, add the location of the WESTPA-WExplore

package to your WEST_PYTHONPATH, e.g.:
export WEST_PYTHONPATH=/your/installation/
location/WESTPA-WExplore/westpa_wexplore:
$WEST_PYTHONPATH

6.4.5 Running the Simulation

First we need to initialize the simulation:

$./init.sh
And then we can run a job. This can be submitted to

a cluster (we will not go over that here), or run locally, as

follows:

$./run.sh --parallel --n-workers 8
This is a good time to break for lunch. In our hands, this

will take about 90 minutes on a 4 GHz Intel Core i7 processor.

6.4.6 Analyzing the WExplore Simulations

Aside from the way that resampling is implemented, WEx-

plore simulations can be treated just like other WE simula-

tions in terms of analysis. All of the techniques discussed

above regarding the definition of observables and plotting

of probability distributions can be used for WExplore simu-

lations as well. Here we will briefly go over how to analyze

simulation properties that are unique to WExplore. Specifi-

cally, the location of the “images” used to define the Voronoi

polyhedra.

Firstly, during run time it can be helpful to keep an eye

on the number of regions defined so far at each level of the

hierarchy. A brief report is written, each cycle, in west.log:
--wexplore-stats--------------------
wallclock time: 0.221 s
Level 0: 10 cells (10 max)
Level 1: 69 cells (100 max)
Level 2: 193 cells (1000 max)

Iteration wallclock: 0:01:41.246056,
cputime: 0:12:40.570392
This is taken from the end of our simulation, where we

have defined 10 regions at the largest level of the hierarchy

(here, they are at least 5 Å apart), 69 total regions at the

medium level (some of which are under the first large region,

some under the second, and so on), and 193 total regions at

the smallest level. It is completely fine if these numbers do

not approach their maximum values. In contrast, if regions

are defined too quickly – especially at the smallest level –

then this is a sign that they are too small. The log file also

displays the wall clock time for the WExplore resampler (0.221

s), which is negligible compared with the total wall clock for

the cycle (1 minute, 41 s), as is typical.

The details about the WExplore regions are stored in

west.h5, along with the positions and progress coordinates.
The included Python script (WExplore_analysis.py) shows
how the coordinates of the images can be accessed from the

west.h5 file and analyzed using Python tools like numpy and
MDTraj [44].

6.4.7 Conclusion

Users should now have everything they need to use the WEx-

plore resampling algorithm on their own system of interest.

WExplore is a powerful way to generate heterogeneous sam-

pling on energy landscapes that are both rough and high-

dimensional. The ability to write your own distance metric

using tools in Python opens up many possibilities. For exam-

ple, a number of dimension reduction tools in sklearn could

be easily imported and used to automatically identify a space

of collective variables.

6.5 Advanced Tutorial 3: Analysis Tools
In this tutorial, we will go over how to calculate progress

coordinates using external analysis suites, automate analysis

of a WE simulation using the WESTPA w_ipa tool and visualize
the evolution of WE datasets with time. We focus on the p53

peptide system described above in the Intermediate Tutorial

(Section 6.2) in which the progress coordinate is the Cα RMSD

of the peptide from its folded, α-helical conformation

6.5.1 Calculating Progress Coordinates Using External

Analysis Suites

Introduction. Here we will demonstrate how to write scripts
for calculating custom progress coordinates for WESTPA simu-

lations using the external analysis suites MDTraj and MDAnal-

ysis [44–46]. A prerequisite to this tutorial is completion of

the Basic Tutorial. You will also need to install the MDTraj or

MDAnalysis analysis suites. Other required files are provided

on GitHub.

Learning Objectives. The specific learning objective of
this tutorial is to calculate progress coordinates using an

external analysis suite (MDAnalysis or MDTraj).

Explanation of Files and Scripts. The master configu-
ration file for the simulation, west.cfg, specifies the dimen-
sionality of the progress coordinate (pcoord_ndim), as well
as how many progress coordinate data points should be re-

turned from each segment (pcoord_len) (it specifies many
other things but these are of primary interest for this tutorial

as they specify the shape of the progress coordinate).

The script rmsd.py is responsible for using MDTraj or MD-
Analysis to calculate the RMSD values during the simulation.

24 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

Read the comments in the script to understand its setup for

each package (there is a unique version for both).

Two scripts are responsible for calling rmsd.py at different
points in the simulation (both found in westpa_scripts/):

• get_pcoord.sh calculates the progress coordinate dur-
ing the initialization of the system. Because dynamics

have not been run yet, WESTPA only needs a single point

progress coordinate, rather than an array. This differ-

ence is controlled by the FORM argument, explained in

the rmsd.py script.
• runseg.sh calculates the progress coordinate during dy-
namics propagation. It passes each segment’s trajectory

file as input to the custom progress coordinate loader,

rmsd.py.

There are slight differences in these files for the MDAnal-

ysis and MDTraj setups, explained in the comments of each

script.

Files in amber_config/ directory:
• P53.MDM2.prmtop - The topology file.
• md.in - The input file which specifies conditions for dy-
namics propagation.

The other files needed for the simulation are found in the

bstates folder, and are explained in the MDAnalysis/MDTraj

specific sections below.

Running the Simulation. Before running the simulation,
you may want to change the binning scheme, the number

of iterations, or other parameters, which can be found in

west.cfg.
To run the simulation, only two scripts must be executed.

To initialize the system:

$./init.sh
To run the simulation in the background:

$./run.sh &
To monitor the progress of the simulation:

$ tail -f west.log
The rest of the tutorial is specific to the software package

used. See below for specifics involving the MDAnalysis and

MDTraj analysis suites.

Using the MDAnalysis Analysis Suite
Files in bstates/ directory:

• P53.MDM2.rst - Used as initial crystal structure to com-
pare to the trajectory when calculating the RMSD and

to start new trajectories in runseg.sh.
• bstates.txt - specify restart file P53.MDM2.rst.

Using the MDTraj Analysis Suite
Files in bstates/ directory:

• P53.MDM2.nc - because MDTraj does not support restart
files, this file is used in get_pcoord.sh to calculate the

initial progress coordinate. It is also used by runseg.sh
as an initial crystal structure to compare to the trajectory

when calculating the RMSD.

• P53.MDM2.rst - Used to start new trajectories in

runseg.sh.
• bstates.txt - specify restart file P53.MDM2.rst.

Conclusion. You have learned in this tutorial the ba-
sic structure of a Python script to calculate progress coor-

dinates for WESTPA using the MDAnalysis and MDTraj anal-

ysis suites. There are two scripts run by WESTPA which call

pcoord_loader.py, triggering the calculation of progress co-
ordinates. The bash script, get_pcoord.sh, triggers the calcu-
lation of only a single progress coordinate, while runseg.sh
triggers the calculation of the progress coordinate at mul-

tiple points in a trajectory, as defined in west.cfg. It is im-
portant to include the last line of the Python scripts, setting

segment.pcoord equal to the progress coordinate array, so
that the progress coordinate may be used to further the sim-

ulation.

6.5.2 The w_ipa Analysis Tool

Introduction. The w_ipa analysis tool is designed to facilitate
analysis of WESTPA simulation datasets through a single inter-

face (Jupyter Notebooks or the command line). In particular,

w_ipa automates analysis routines, ensures data consistency
through the use of automatically updated “analysis schemes”,

enables a user to easily view a particular dataset or trajec-

tory segment in the H5 file, and monitors the progress of the

simulation (e.g. trajectory weights, progress coordinates, and

other properties of interest).

Learning Objectives. The specific learning objectives of

this tutorial are to use the w_ipa analysis tool to:

1. Calculate rate constants

2. Trace and analyze trajectory segments (weight, pcoord,

auxdata)

3. Plot datasets

Setting Up. Using w_ipa is straightforward. The west.cfg
file, which specifies most of the simulation parameters, also

specifies the analysis parameters under the Analysis head-
ing.

The general format of the analysis section can be seen

in the included west.cfg file. More detailed examples are
available in the Basic and Intermediate Tutorials.

In order to run w_ipa, there must be at least a single anal-
ysis scheme specified. This scheme does not have to consist

of the bins and/or state definitions used during the simula-

tion. Less physically relevant schemes may be employed. Any

changes made to analysis schemes in the west.cfg file will be
actualized the next time w_ipa is run. The user is therefore

25 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

guaranteed to never wonder whether the analysis files are up

to date.

The assign.h5, reweight.h5, and direct.h5 files are

stored under ANALYSIS/SCHEME_NAME. The optional argu-
ments that can be passed to w_assign, w_direct, and
w_reweight can be specified by creating a section with the
tool name and using the value pairs argument.

The Interface. To run w_ipa from the command line, en-
ter the command w_ipa after having sourced westpa.sh (if not
already sourced). To run w_ipa in a Jupyter notebook enter
the command w_jupyter from the command line. When you
create a new Jupyter notebook, there are some basic Python

commands that must be executed:

import w_ipa
w = w_ipa.WIPI()
At startup, it will load or run the analysis
schemes specified in the configuration file
(typically west.cfg)

w.main()
w.interface = ’matplotlib’
The Python kernel must be launched with the use of

w_jupyter, or otherwise, the $PYTHON_PATH variable must be
set to include the WESTPA directories. The command w_env,
which ships with WESTPA, is responsible for setting environ-

ment variables and can be used with the Jupyter notebook

command to ensure w_ipa is importable.
All commands are applicable from both the command

line and Jupyter notebook interface; if plotting functions are

called from the command line, the plot will appear within the

console (it can be configured to use matplotlib if desired; this

requires an active, available X session).

All of the variables are now accessible from the w object.
Changing Schemes and Accessing Datasets. A typical

analysis routine begins by selecting an appropriate analysis

scheme that may consist of multiple state definitions, averag-

ing options, or reweighting parameters that are appropriate

for the simulation. Most of the datasets are presented from

the current, “active” state, although access to other datasets

is conveniently available. All numerical datasets are given as

numpy arrays, allowing for easy analysis of data.

To see what schemes are available, run the following com-

mand:

$ w.list_schemes
To change schemes, you may set the w.scheme variable

to a string or integer value (corresponding to the index of

the scheme). For instance, suppose you have the following

two schemes: “EXAMPLE”, and “ALTERNATE”, and the current
scheme is "EXAMPLE". To access the properties of the current
iteration in the current scheme (explained in more detail

below), you would type the following:

$ w.current

However, to access the alternate scheme, you would run

the following command:

$ w.schemes.ALTERNATE.current
Where “ALTERNATE” corresponds to the scheme name writ-

ten in the west.cfg file.
The w_ipa tool works by presenting an iteration and all

its data as a single object. Each iteration object contains

numerous datasets and helper functions designed to ease

analysis. After loading, w_ipa defaults to the final iteration.
You can change the iteration by using the following command:

$ w.iteration = 39
At any time, we have three iteration objects available in the

object w: current, past, future. The past and future datasets
are keyed to the parents and children of the segments in the

current dataset. For instance, if you are analyzing segment

200 in the current iteration and wish to analyze the parent

segment it came from, you could access the two datasets

using the following iteration objects:

$ w.current[200]
$ w.past[200]
Even though it is very unlikely that the actual segment ID

of the parent of segment 200 is 200, it is mapped correctly to

enable convenient analysis. To obtain the actual segment ID,

just run:

$ w.past[200].seg_id OR w.past[200][‘seg_id’]
As indicated above, objects in w_ipa can be called either

as Python dictionaries or as attributes on the object. These

can be listed by calling the print method on the parent object.

In addition, as w_ipa is using iPython under the hood, tab
completion works as when using the command-line interface

(CLI).

To access the main datasets of interest, pcoord and
auxdata, type the following:

$ w.current.pcoord
$ w.current.auxdata
These commands will output the full datasets, which can

be useful for calculating properties on all trajectory segments

at once. But what if we are only interested in looking at the

properties of particular segments?

You could manually find a segment of interest, but w_ipa
includes a few convenient properties that return certain seg-

ments. In particular, w.current provides the following:
maxweight
minweight
successful_trajectories
The maxweight and minweight properties return objects

which contain data about the segments that carry the high-

est and lowest weights in the current iteration, respectively.

The successful_trajectories property returns the IDs of the
segments that successfully transitioned between states (the

states are defined in your west.cfg). Calling these functions

26 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

on an iteration object yields all datasets pertaining to the seg-

ment with the desired property. In this WE simulation, each

trajectory contains 101 timepoints. Therefore, the maxweight
segment (seg_id 177) in iteration 49 has (101,2) pcoord values,

101 auxdata values, and it can switch bins and states 101

times. You can see this by running w.current.maxweight.
The auxdata dataset is unique in that the simulations can

contain any number of auxiliary datasets with any unique

name. Here, they are returned as a dictionary where the key

is the dataset name defined in west.cfg and the value is a
numpy array containing the actual dataset.

Segment 177 above was in state 1 during the entire itera-

tion. But what is state 1? It is defined in west.cfg, but we do
not have to go back to west.cfg to look it up. Simply run:

$ w.state_labels
It is also in bin 0 the entire time (note that these are the

bins defined in west.cfg for this analysis scheme and not the
bins used in the simulation). What is the pcoord value of that

bin? Run:

$ w.bin_labels
To track the immediate parent and children of a segment,

we can use w.past and w.future. These iteration objects are
similar to w.current, but keyed to give information about the
segments in w.current. For instance, to look up the weight
of segment 177’s parent, run the following:

$ w.past[177].weights
Likewise, to see whether the same segment had any chil-

dren, run:

$ w.future[177]
Segments always have a past, but do not always have a fu-

ture. They may also produce multiple children, so the values

returned by w.future[seg_id] are usually more complicated.
Rather than being given the datasets directly, w.future re-
turns a list of the datasets.

To determine the properties of a complete trajectory (that

is, the string of segments going back to the first iteration),

w_ipa includes a fast trace function. To trace segment 177 in
iteration 39 (current iteration), run the following:

$ s = w.trace(177)
It returns an object similar to w.current[177], except that

it also contains all historical information. The auxdata, bins,
pcoord, and states datasets are all going to be very large;
their shape should be the product of the number of time-

points per iteration and the trajectory length. As we are at

iteration 39, and have 101 time points per τ value, we should

have 3939 values in each dataset!

Plotting. Rather than visually inspecting each value, let
us just plot it. Run the following:

$ clear
$ s.weights.plot()
$ clear

$ s.pcoord.plot()
$ clear
Many datasets, such as weight, default to a logscale; oth-

ers, such as pcoord, use a linear scale. By default, the 0th
dimension of pcoord is plotted. When the plotting function
is called via the CLI, a rough estimate of how the trajectory’s

pcoord has evolved is plotted in the terminal.

The w.current iteration object contains information about
the rate constants that were calculated in the active analy-

sis scheme. To view an array containing the rate constants

along with the upper and lower confidence intervals, run the

following (do not forget about tab completion):

$ w.current.direct.rate_evolution OR
$ w.current.rate_evolution.direct
To view a plot of their evolution, run the following:

$ w.current.direct.rate_evolution.plot()
The w_ipa tool displays the upper and lower confidence

intervals on the plot as well.

6.5.3 Visualization of WE Datasets

In addition to generating probability distributions as a func-

tion of the progress coordinate (or other observables of inter-

est), it can be helpful to examine movies of how the distribu-

tions evolve with time. Such movies can be used to determine

the optimal number of trajectories per bin in a particular re-

gion of the progress coordinate by tracking how the probabil-

ity distribution evolves with the number of trajectories that

region.

Learning Objectives. The specific learning objectives of
this tutorial are:

1. Create a movie of how a probability distribution evolves

with time.

2. Trace representative trajectories over this probability

distribution.

Here, we will create a movie of how a two-dimensional

probability distribution (Figure 13) evolves with time. This

movie-making feature is currently carried out using a bash

script (pdist_evol.sh) and will eventually be added to the
WESTPA plothist tool.
The bash script involves the following three steps: (1) run

the w_pdist tool on the west.h5 file to generate probability
distributions in a specified folder that will also contain the

eventual movie of how the distributions evolve with time, (2)

generate a plot of a two-dimensional probability distribution

for each iteration as a cumulative moving average from itera-

tion 1 to 40 and (3) create the movie from the 40 generated

frames of the probability distributions. The most important

part of this script is the --postprocess-function option of
plothist that is defined in postprocess.py. This function re-
quires a basic knowledge of Python and matplotlib, and can

27 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

Figure 13. Two-dimensional probability distribution as a function of
the progress coordinate. Two representative, continuous trajectories

that originate from distinct initial states are traced in cyan and white,

respectively.

be used to modify features of the plot (e.g. adjustment of

axis labels, tick marks, titles, and lines) via the matplotlib
interface. In addition, external files from various analyses can

be uploaded and overlaid on the plot as demonstrated in this

example.

Here, we will select two trajectories from the last WE itera-

tion and overlay their pathways on the probability distribution

of the overall simulation as a function of progress coordinate.

First, we will use the trace_walker function to determine the
segment number of the selected trajectories in each WE itera-

tion going all the way back to the corresponding conformation

of the initial state ensemble. This process of tracing can also

be accomplished by using WESTPA tools w_ipa and w_trace.
After the segment numbers are obtained, the get_pcoords
function loads in 10 progress coordinate values per iteration

for the trajectories. Finally, a movie-making tool (here, we use

mencoder) creates a movie from the 40 frames of probability
distributions.

7 Author Contributions
AT Bogetti, B Mostofian, A Dickson, A J Pratt, AS Saglam, PO

Harrison, JL Adelman, M Dudek, PA Torrillo, A J DeGrave, and

U Adhikari developed and wrote the tutorials; the primary

author of each tutorial is designated as a co-first author of

the overall manuscript and listed in the order in which the

tutorials appear in the manuscript. LT Chong and DM Zucker-

man provided guidance for tutorial development. AT Bogetti,

LT Chong, DM Zuckerman, A J Pratt, AS Saglam, B Mostofian,

and MC Zwier wrote the introductory sections leading up to

the tutorials.

8 Other Contributions
We thank the many users of the WESTPA software who have

provided important feedback for improving our tutorials and

documentation over the past several years. We are also grate-

ful to Samuel Lotz (Dickson Lab) for his contributions to the

WESTPA-WExplore plugin.

9 Potentially Conflicting Interests
The authors declare no conflicting interests.

10 Funding Information
This work was supported by NIH R01 GM1151805-01 to LT

Chong, DM Zuckerman, and MC Zwier; NSF CHE-1807301 and

NIH R01 GM1115762 to LT Chong; a University of Pittsburgh

Dietrich School of Arts and Sciences Graduate Fellowship to AT

Bogetti; NIH R01GM130794 to A Dickson; NIH T32-DK061296

to JL Adelman; and a University of Pittsburgh Brackenridge

Summer Undergraduate Fellowship to PA Torrillo.

11 Content and links
All files needed for the tutorials can be found at https://github.

com/westpa/westpa_tutorials

References
[1] Zwier MC, Adelman JL, Kaus JW, Pratt A J, Wong KF, Rego NB,

Suárez E, Lettieri S, Wang DW, Grabe M, Zuckerman DM, Chong

LT. WESTPA: An Interoperable, Highly Scalable Software Pack-

age for Weighted Ensemble Simulation and Analysis. Journal

of Chemical Theory and Computation. 2015; 11(2):800–809.

https://doi.org/10.1021/ct5010615.

[2] Huber GA, Kim S. Weighted-ensemble Brownian dynamics

simulations for protein association reactions. Biophysical

Journal. 1996; 70(1):97–110. https://doi.org/10.1016/S0006-

3495(96)79552-8.

[3] Berendsen HJC, van der Spoel D, van Drunen R. GROMACS:
A message-passing parallel molecular dynamics implementa-

tion. Computer Physics Communications. 1995; 91(1):43–56.

https://doi.org/10.1016/0010-4655(95)00042-E.

[4] Salomon-Ferrer R, Case DA, Walker RC. An overview

of the Amber biomolecular simulation package: Amber

biomolecular simulation package. Wiley Interdisciplinary Re-

views: Computational Molecular Science. 2013; 3(2):198–210.

https://doi.org/10.1002/wcms.1121.

[5] Eastman P, Pande V. OpenMM: A Hardware-Independent
Framework for Molecular Simulations. Comput-

ing in Science & Engineering. 2010; 12(4):34–39.

https://doi.org/10.1109/MCSE.2010.27.

[6] Adelman JL, Grabe M. Simulating rare events using a weighted
ensemble-based stringmethod. The Journal of Chemical Physics.

2013; 138(4):044105. https://doi.org/10.1063/1.4773892.

28 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://github.com/westpa/westpa_tutorials
https://github.com/westpa/westpa_tutorials
https://doi.org/10.1021/ct5010615
https://doi.org/10.1016/S0006-3495(96)79552-8
https://doi.org/10.1016/S0006-3495(96)79552-8
https://doi.org/10.1016/0010-4655(95)00042-E
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1109/MCSE.2010.27
https://doi.org/10.1063/1.4773892
https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

[7] Dickson A, Brooks CL. WExplore: Hierarchical Exploration of
High-Dimensional Spaces Using the Weighted Ensemble Algo-

rithm. The Journal of Physical Chemistry B. 2014; 118(13):3532–

3542. https://doi.org/10.1021/jp411479c.

[8] Zwier MC, Kaus JW, Chong LT. Efficient Explicit-Solvent Molec-
ular Dynamics Simulations of Molecular Association Kinetics:

Methane/Methane, Na + /Cl , Methane/Benzene, and K + /18-

Crown-6 Ether. Journal of Chemical Theory and Computation.

2011; 7(4):1189–1197. https://doi.org/10.1021/ct100626x.

[9] Zwier MC, Pratt A J, Adelman JL, Kaus JW, Zuckerman DM, Chong
LT. Efficient Atomistic Simulation of Pathways and Calculation

of Rate Constants for a Protein–Peptide Binding Process: Ap-

plication to the MDM2 Protein and an Intrinsically Disordered

p53 Peptide. The Journal of Physical Chemistry Letters. 2016;

7(17):3440–3445. https://doi.org/10.1021/acs.jpclett.6b01502.

[10] Saglam AS, Chong LT. Protein–protein binding pathways and
calculations of rate constants using fully-continuous, explicit-

solvent simulations. Chemical Science. 2019; 10(8):2360–2372.

https://doi.org/10.1039/C8SC04811H.

[11] Adhikari U, Mostofian B, Copperman J, Subramanian SR, Pe-
tersen AA, Zuckerman DM. Computational Estimation of

Microsecond to Second Atomistic Folding Times. Journal

of the American Chemical Society. 2019; 141(16):6519–6526.

https://doi.org/10.1021/jacs.8b10735.

[12] DeGrave AJ, Ha JH, Loh SN, Chong LT. Large enhancement
of response times of a protein conformational switch by com-

putational design. Nature Communications. 2018-12; 9(1).

https://doi.org/10.1038/s41467-018-03228-6.

[13] Donovan RM, Sedgewick A J, Faeder JR, Zuckerman

DM. Efficient stochastic simulation of chemical kinet-

ics networks using a weighted ensemble of trajectories.

The Journal of Chemical Physics. 2013; 139(11):115105.

https://doi.org/10.1063/1.4821167.

[14] Donovan RM, Tapia JJ, Sullivan DP, Faeder JR, Murphy RF, Dit-
trich M, Zuckerman DM. Unbiased Rare Event Sampling in

Spatial Stochastic Systems Biology Models Using a Weighted

Ensemble of Trajectories. PLOS Computational Biology. 2016;

12(2):e1004611. https://doi.org/10.1371/journal.pcbi.1004611.

[15] Tse MJ, Chu BK, Gallivan CP, Read EL. Rare-event sam-

pling of epigenetic landscapes and phenotype transitions.

PLOS Computational Biology. 2018-08-03; 14(8):e1006336.

https://doi.org/10.1371/journal.pcbi.1006336.

[16] Kahn H, Harris TE. Estimation of particle transmission by ran-
dom sampling. National Bureau of Standards Applied Math

Series. 1951; 12:27–30.

[17] Zhang BW, Jasnow D, Zuckerman DM. The “weighted

ensemble” path sampling method is statistically exact for

a broad class of stochastic processes and binning proce-

dures. The Journal of Chemical Physics. 2010; 132(5):054107.

https://doi.org/10.1063/1.3306345.

[18] Donyapour N, Roussey N, Dickson A. REVO: Resampling

of Ensembles by Variation Optimization. chemRxiv. 2019;

https://doi.org/10.26434/chemrxiv.7973759.

[19] Suárez E, Zuckerman DM. Pathway Histogram Analysis of Tra-
jectories: A general strategy for quantification of molecular

mechanisms. arXiv:181010514 [physics]. 2018; http://arxiv.org/

abs/1810.10514.

[20] Bhatt D, Zhang BW, Zuckerman DM. Steady-state

simulations using weighted ensemble path sampling.

The Journal of Chemical Physics. 2010; 133(1):014110.

https://doi.org/10.1063/1.3456985.

[21] Zuckerman DM, Chong LT. Weighted Ensemble Simu-

lation: Review of Methodology, Applications, and Soft-

ware. Annual Review of Biophysics. 2017; 46(1):43–57.

https://doi.org/10.1146/annurev-biophys-070816-033834.

[22] Suárez E, Lettieri S, Zwier MC, Stringer CA, Subramanian SR,
Chong LT, Zuckerman DM. Simultaneous Computation of Dy-

namical and Equilibrium Information Using a Weighted Ensem-

ble of Trajectories. Journal of Chemical Theory and Computation.

2014; 10(7):2658–2667. https://doi.org/10.1021/ct401065r.

[23] Copperman J, Zuckerman D. Accelerated estimation of long-
timescale kinetics by combining weighted ensemble simulation

with Markov model "microstates" using non-Markovian theory.

arXiv:190304673 [cond-mat, physics:physics]. 2019; http://arxiv.

org/abs/1903.04673.

[24] Braun E, Gilmer J, Mayes HB, Mobley DL, Monroe JI, Prasad S,
Zuckerman DM. Best Practices for Foundations in Molecular Sim-

ulations [Article v1.0]. Living Journal of Computational Molecular

Science. 2019; 1(1). https://doi.org/10.33011/livecoms.1.1.5957.

[25] Grossfield A, Patrone PN, Roe DR, Schultz A J, Siderius D, Zuck-
erman DM. Best Practices for Quantification of Uncertainty

and Sampling Quality in Molecular Simulations [Article v1.0].

Living Journal of Computational Molecular Science. 2019; 1(1).

https://doi.org/10.33011/livecoms.1.1.5067.

[26] Mostofian B, Zuckerman DM. Error Analysis for Small-Sample,
High-Variance Data: Cautions for Bootstrapping and Bayesian

Bootstrapping. Biophysical Journal. 2019-02; 116(3):140a.

https://doi.org/10.1016/j.bpj.2018.11.779.

[27] Dickson A, Warmflash A, Dinner AR. Separating for-

ward and backward pathways in nonequilibrium umbrella

sampling. Journal of Chemical Physics. 2009; 131(15).

https://doi.org/10.1063/1.3244561.

[28] Dickson A, Lotz SD. Ligand Release Pathways Obtained

with WExplore: Residence Times and Mechanisms. Jour-

nal of Physical Chemistry B. 2016; 120(24):5377–5385.

https://doi.org/10.1021/acs.jpcb.6b04012.

[29] Dickson A, Lotz SD. Multiple Unbinding Pathways and Ligand-
Induced Destabilization Revealed by WExplore. Biophysical Jour-

nal. 2017; 112:620–629.

[30] Dixon T, Lotz SD, Dickson A. Predicting ligand binding affinity
using on- and off-rates for the SAMPL6 SAMPLing challenge.

Journal of Computer-Aided Molecular Design. 2018; p. 1–12.

https://doi.org/https://doi.org/10.1007/s10822-018-0149-3.

[31] Lotz SD, Dickson A. Unbiased Molecular Dynamics of 11 min
Timescale Drug Unbinding Reveals Transition State Stabilizing

Interactions. Journal of the American Chemical Society. 2018; p.

jacs.7b08572. https://doi.org/10.1021/jacs.7b08572.

29 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.1021/jp411479c
https://doi.org/10.1021/ct100626x
https://doi.org/10.1021/acs.jpclett.6b01502
https://doi.org/10.1039/C8SC04811H
https://doi.org/10.1021/jacs.8b10735
https://doi.org/10.1038/s41467-018-03228-6
https://doi.org/10.1063/1.4821167
https://doi.org/10.1371/journal.pcbi.1004611
https://doi.org/10.1371/journal.pcbi.1006336
https://doi.org/10.1063/1.3306345
https://doi.org/10.26434/chemrxiv.7973759
http://arxiv.org/abs/1810.10514
http://arxiv.org/abs/1810.10514
https://doi.org/10.1063/1.3456985
https://doi.org/10.1146/annurev-biophys-070816-033834
https://doi.org/10.1021/ct401065r
http://arxiv.org/abs/1903.04673
http://arxiv.org/abs/1903.04673
https://doi.org/10.33011/livecoms.1.1.5957
https://doi.org/10.33011/livecoms.1.1.5067
https://doi.org/10.1016/j.bpj.2018.11.779
https://doi.org/10.1063/1.3244561
https://doi.org/10.1021/acs.jpcb.6b04012
https://doi.org/https://doi.org/10.1007/s10822-018-0149-3
https://doi.org/10.1021/jacs.7b08572
https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

[32] Zhang BW, Jasnow D, Zuckerman DM. Efficient and verified
simulation of a path ensemble for conformational change in

a united-residue model of calmodulin. Proceedings of the

National Academy of Sciences. 2007; 104(46):18043–18048.

https://doi.org/10.1073/pnas.0706349104.

[33] Pratt A, Suarez E, Zuckerman D, Chong L. Extensive Evaluation
of Weighted Ensemble Strategies for Calculating Rate Constants

and Binding Affinities of Molecular Association/Dissociation Pro-

cesses. bioRxiv. 2019; https://doi.org/10.1101/671172.

[34] DeGrave AJ, Chong LT. Reducing the impact of transient ef-
fects in rate-constant estimation using the weighted ensemble

strategy. bioRxiv. 2018; https://doi.org/10.1101/453647.

[35] Mostofian B, Zuckerman DM. Statistical Uncertainty Anal-
ysis for Small-Sample, High Log-Variance Data: Cautions

for Bootstrapping and Bayesian Bootstrapping. Journal of

Chemical Theory and Computation. 2019; 15(6):3499–3509.

https://doi.org/10.1021/acs.jctc.9b00015.

[36] Joung IS, Cheatham TE. Molecular Dynamics Simulations of
the Dynamic and Energetic Properties of Alkali and Halide

Ions Using Water-Model-Specific Ion Parameters. The Jour-

nal of Physical Chemistry B. 2009; 113(40):13279–13290.

https://doi.org/10.1021/jp902584c.

[37] JorgensenWL, Chandrasekhar J, Madura JD, Impey RW, Klein ML.
Comparison of simple potential functions for simulating liquid

water. The Journal of Chemical Physics. 1983; 79(2):926–935.

https://doi.org/10.1063/1.445869.

[38] Nguyen H, Maier J, Huang H, Perrone V, Simmerling C. Folding
Simulations for Proteins with Diverse Topologies Are Accessible

in Days with a Physics-Based Force Field and Implicit Solvent.

Journal of the American Chemical Society. 2014; 136(40):13959–

13962. https://doi.org/10.1021/ja5032776.

[39] Nguyen H, Roe DR, Simmerling C. Improved Generalized Born
Solvent Model Parameters for Protein Simulations. Journal

of Chemical Theory and Computation. 2013; 9(4):2020–2034.

https://doi.org/10.1021/ct3010485.

[40] Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J,
Levine AJ, Pavletich NP. Structure of the MDM2 On-

coprotein Bound to the p53 Tumor Suppressor Trans-

activation Domain. Science. 1996; 274(5289):948–953.

https://doi.org/10.1126/science.274.5289.948.

[41] Honda S, Yamasaki K, Sawada Y, Morii H. 10 Residue Folded Pep-
tide Designed by Segment Statistics. Structure. 2004; 12(8):1507–

1518. https://doi.org/10.1016/j.str.2004.05.022.

[42] Hill TL. In: State Probabilities and Fluxes in Terms of the Rate
Constants of the Diagram Springer New York; 1989. p. 39–88.

https://doi.org/10.1007/978-1-4612-3558-3_2.

[43] Dickson A. Mapping the Ligand Binding Land-

scape. Biophysical Journal. 2018; 115(9):1707–1719.

https://doi.org/10.1016/j.bpj.2018.09.021.

[44] McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM,
Hernández CX, Schwantes CR, Wang LP, Lane TJ, Pande VS. MD-

Traj: A Modern Open Library for the Analysis of Molecular Dy-

namics Trajectories. Biophysical Journal. 2015; 109(8):1528 –

1532. https://doi.org/10.1016/j.bpj.2015.08.015.

[45] Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MD-
Analysis: A toolkit for the analysis of molecular dynamics simu-

lations. Journal of Computational Chemistry. 2011; 32(10):2319–

2327. https://doi.org/10.1002/jcc.21787.

[46] Gowers R, Linke M, Barnoud J, Reddy T, Melo M, Seyler
S, Domański J, Dotson D, Buchoux S, Kenney I, Beckstein

O. MDAnalysis: A Python Package for the Rapid Analysis

of Molecular Dynamics Simulations. In: ; 2016. p. 98–105.

https://doi.org/10.25080/Majora-629e541a-00e.

30 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.1073/pnas.0706349104
https://doi.org/10.1101/671172
https://doi.org/10.1101/453647
https://doi.org/10.1021/acs.jctc.9b00015
https://doi.org/10.1021/jp902584c
https://doi.org/10.1063/1.445869
https://doi.org/10.1021/ja5032776
https://doi.org/10.1021/ct3010485
https://doi.org/10.1126/science.274.5289.948
https://doi.org/10.1016/j.str.2004.05.022
https://doi.org/10.1007/978-1-4612-3558-3_2
https://doi.org/10.1016/j.bpj.2018.09.021
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1002/jcc.21787
https://doi.org/10.25080/Majora-629e541a-00e
https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

PROTOCOL FOR RUNNINGWE SIMULATIONS
I Ready.

(1) Organize files into directories. The initial coordinate file(s) should go in bstates and the topology and MD input
files should go in common_files. In addition, any scripts needed to calculate the progress coordinate should be
placed in common_files. (p.12)

(2) Prepare the system environment. Edit env.sh accordingly for your system environment, i.e. source any files
needed to set up the dynamics engine and set variables equal to the full paths of programs (see p. 12).

(3) Specify WE parameters. In the west.cfg file, specify the number of WE iterations that will be carried out, progress
coordinate, number of progress coordinate values that will be recorded per iteration, bin spacing, and number of

trajectories per bin (see Section 3; Table 2). If a nested coordinate is desired, the bin spacing should be defined

in system.py (See point 4 on p. 8). The τ value is specified in the main input file for dynamics propagation (in
common_files/) through the total number of MD steps. If using the WExplore plugin, you will need to specify
parameters that are unique to WExplore (see Section 3.1 and Tutorial 6.4).

(4) Set up calculations of auxiliary data. Decide if you want to store any data that is auxiliary to the progress
coordinate and add the corresponding datasets to west.cfg.

(5) Specify whether to run equilibrium or steady-state WE. Edit the init.sh file to include TSTATE_ARGS if you plan
to run steady-state WE. Also, edit tstate.file to include the target state progress coordinate value(s). (p. 12)

(6) Calculate your initial progress coordinate value(s). You can either set us this calculation manually, placing the
contents in pcoord.init (see Basic Tutorial), or edit get_pcoord.sh to calculate it (see Intermediate Tutorial) before
those values are passed to WESTPA. (pp. 13-14)

II Set.

(1) Initialize the WE simulation. This is done by running init.sh.
(2) Prepare to run the WE simulation. Edit runseg.sh to run dynamics, calculate the progress coordinate and store
any auxiliary data. (p. 14)

III Go!

(1) Run the WE simulation. To execute w_run on your cluster, run an appropriate submission script (e.g., using Slurm).
(2) Monitor simulation progress. Backup your west.h5 file and use w_pdist and plothist to calculate and visualize
probability distributions (pp. 14). If your WE simulation is not making any bin-to-bin transitions stop the simulation

and restart the simulation with a shorter τ , adjustments in the progress coordinate, and/or adjustments in bin

spacings (pp. 16-17).

(3) Assess simulation convergence. Plot the average flux into the target state (or other observable of interest) as a
function of WE iteration (p. 15).

IV Analyze.

(1) Progress coordinate and auxiliary data. Progress coordinate and auxiliary datasets are stored in the west.h5 file
and can be extracted using hdfview or the h5py Python package. The w_ipa tool can be used to calculate kinetic
observables (e.g. rate constants), which are outputted to the assign.h5 and direct.h5 files. (p. 15) To plot a
dataset, use a plotting tool such as matplotlib.

(2) Visualize a successful trajectory. Start by running w_succ to obtain the WE iteration and segment of the final
conformation from the successful trajectory (p. 14). Then, run w_trace to obtain the series of conformations in
the trajectory by tracing backwards from the final to initial conformations of the trajectory. The resulting series of

conformations can then be visualized using a software package such as VMD. (p. 15)

31 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

A LiveCoMS Tutorial

CHECKLIST FOR TROUBLESHOOTINGWE SIMULATIONS
Files for Dynamics Propagation
� Have you set up all of the files for propagating the dynamics using your dynamics engine (e.g. Amber, OpenMM)?

System Configuration (west.cfg file)
� Is pcoord_len set to the number of data points that corresponds to the frequency with which the dynamics engine
outputs the progress coordinate? Note: Many MD engines (e.g. Gromacs) output the initial point (i.e. zero).

� Are the bins in the expected positions? You can easily view the positions of the bins using a Python interpreter.

Initializing the simulation (init.sh file)
� Is the directory structure for the trajectory output files consistent with specifications in the west.cfg file?
� Are the basis (bstate) states, and if applicable, target states (tstate), specified correctly?

Calculating the progress coordinate for initial states (get_pcoord.sh file)
� Ensure that the procedure to extract the progress coordinate works by calculating your progress coordinate manually

for one (or more) basis state files.

� Examine structure(s) of the initial states using visualization software (e.g. VMD, PyMOL) to verify that the structure(s)

match the progress coordinate in the H5 file

Segment implementation (runseg.sh)
� Ensure that the progress coordinate is being calculated correctly by manually running a single dynamics segment of

length /tau for a single trajectory walker. Check that your analysis pipeline works using the output from the single
dynamics segment.

� Are you feeding the information (e.g., coordinates, velocities) that is required for continuing trajectories?

� Check the seg_log file to further ensure correct calculation of the progress coordinate.
� Ensure you are saving everything you might need to restart your simulation later on, including random seeds for

stochastic dynamics as auxiliary data in the H5 file.

Storage
� WESTPA simulations can generate a lot of data! Make sure you have enough space before starting the simulation.

� Do you have a plan for backing up the simulation? Consider using tar to compress files from past iterations for easier

backup. Keep file sizes =<300 GB.

� For all-atom explicit water simulations, it’s a good idea to save a separate copy of your trajectories without water

coordinates for more efficient analysis.

Simulation Progress (west.h5 file)
� Check that the first WE iteration has been initialized by typing h5ls west.h5/iterations into the command line. You
should see iter_00000001 in the output.

� In addition, the progress coordinate should be initialized. Check this by using the command

h5ls -d west.h5/iterations/iter_00000001/pcoord. If all is well, the output will show that the array is populated
by zeros and the first point is the value calculated by get_pcoord.sh.

Analysis
� If you are running analysis on a shared computing resource, use the --serial flag with the analysis tool. Otherwise,
many of the included tools default to parallel mode (e.g., w_assign), which will create as many Python threads as
there are CPU cores available on your resource.

32 of 32

https://doi.org/10.33011/livecoms.1.2.10607

Living J. Comp. Mol. Sci. 2019, 1(2), 10607

https://doi.org/10.33011/livecoms.1.2.10607

	Introduction and Scope of Tutorials
	Using WE Concepts in MD Simulation
	Prerequisites
	Background Knowledge and Experience
	Software Requirements
	Hardware Requirements
	Running WESTPA on a Computing Cluster

	Workflow of Running a WE Simulation
	General Guidelines for Choosing WE Parameters
	Choosing WExplore-Specific Parameters

	Cluster-Specific Considerations
	Minimizing the Number of Output Files
	Data Management
	Minimizing Network Traffic Across Multiple Computing Nodes
	Advice when Using GPUs

	Uncertainty Quantification and Monitoring of Convergence
	Tutorials
	Basic Tutorial: Na+/Cl- Association
	Introduction
	Prerequisites
	Setting up a WE Simulation Using WESTPA
	Initializing the WE Simulation
	Running the WE Simulation
	Monitoring the WE Simulation
	Analyzing the WE Simulation
	Conclusion

	Intermediate Tutorial: P53 Peptide Conformational Sampling
	Introduction
	Prerequisites
	Adding Another Dimension to the Progress Coordinate
	Preparing the WE System
	Tracking the Auxiliary Data
	Initializing and Running the WE Simulation
	Monitoring the WE Simulation (10 Iterations)
	Adjusting Bin Spacings "On the Fly"
	Monitoring the WE Simulation (40 Iterations)
	Accessing Auxiliary Data
	Conclusion

	Advanced Tutorial 1: Folding of Chignolin Mini-Protein
	Introduction
	Brute Force Simulations
	Using WESTPA
	Conclusion

	Advanced Tutorial 2: K+/18-Crown-6 Ether Dissociation with the WExplore Plugin
	Introduction
	Prerequisites
	Installation and Configuration of the WESTPA-WExplore Plugin
	Preparing the Simulation
	Running the Simulation
	Analyzing the WExplore Simulations
	Conclusion

	Advanced Tutorial 3: Analysis Tools
	Calculating Progress Coordinates Using External Analysis Suites
	The w_ipa Analysis Tool
	Visualization of WE Datasets

	Author Contributions
	Other Contributions
	Potentially Conflicting Interests
	Funding Information
	Content and links

