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ABSTRACT: The weighted ensemble (WE) path sampling
strategy has pushed the boundaries of molecular simulation by
enabling the generation of rates and atomistic pathways for
biological processes beyond the ms time scale. However, the WE
strategy has not yet reached its full potential and much can be
gained from pursuing “stress tests”. Here, we have explored a stress
test involving the seconds-timescale unbinding of a highly charged
ligand from a protein receptor: the release of the ADP ligand from
the Eg5 protein receptor, which functions as a motor protein in cell
division. From this stress test, we learned valuable lessons
regarding the choice of progress coordinate and improvements
to the WE resampling procedure. Based on the latter, we have
developed a WE method referred to as the minimal adaptive
binless (MABL) method. The MABL method is in the same spirit as our previously developed minimal adaptive binning scheme for
surmounting large energetic barriers but is “binless”, i.e., does not require the use of rectilinear bins along a progress coordinate. This
minimal version of a binless method is >50% more efficient than the corresponding binned version and provides a framework for
implementing more complex binless methods.

■ INTRODUCTION
The weighted ensemble (WE) path sampling strategy1,2 has
enabled the generation of pathways with rigorous kinetics for
grand-challenge applications in molecular simulation. These
applications include large-scale conformational transitions
within proteins,3,4 protein folding,5−8 protein−protein bind-
ing,9,10 protein−ligand unbinding,11,12 and chemical reactions.13

The WE strategy efficiently samples barrier-crossing processes
by running multiple, weighted trajectories in parallel and
periodically applying a resampling procedure to provide even
coverage of configurational space.1,2 Typically, configurational
space is divided into regions, or “bins” along a progress
coordinate�such as the distance between residues or the
RMSD to a target structure�that captures the system’s slow,
relevant motions. Although progress coordinates can be
multidimensional, those with more than three dimensions are
often impractical due to computational limitations.

To address this challenge, “binless” WE methods have been
developed. These approaches reduce the cost of tracking
progress in high-dimensional spaces by using a one-dimensional
scoring functions instead of multidimensional progress coor-
dinates.7,8,14,15 While binlessWEmethods still rely on metrics of
progress, they apply these metrics in a more efficient way
compared to binned WE techniques. A key feature of the WE
strategy is that the progress coordinate can be changed “on the

fly” during a simulation, as trajectory weights are independent of
the specific progress coordinate used.16

Enhanced sampling strategies generally aim to make
molecular simulations more efficient by reducing the time
spent exploring redundant stable states. These strategies
promote broader sampling through one of three main
approaches. The first class of strategies uses elevated temper-
atures to help systems overcome local barriers, with parallel
tempering strategies�such as replica exchange molecular
dynamics�being a widely used example. The second class
introduces biasing forces to help the system surmount barriers,
as exemplified by metadynamics. The third class, which includes
WE and other path sampling strategies, enhances sampling of
transitions between stable states rather than between the states
themselves without altering the free energy landscape or
applying any biasing forces. Strategies in the first class cannot
provide rate estimates. Methods of the second class�such as τ-
random acceleration molecular dynamics (τ-RAMD),17 scaled-
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MD,18 targeted MD,19 and steered MD20�typically yield only
relative rate estimates. Some approaches within the second and
third classes, particularly metadynamics,21 Gaussian accelerated
MD,22 and path sampling strategies more generally, can provide
absolute rate estimates. The WE strategy is unique among these
methods in its ability to provide absolute rate estimates while
remaining highly flexible.11 Unlike post-simulation methods
such as Markov state modeling or path sampling strategies such
as weighted ensemble milestoning (WEM) that prioritize rate
estimates with discontinuous trajectory segments,23,24 the WE
strategy emphasizes the generation of continuous pathways.
These detailed pathways not only yield rate estimates but also
enable rich mechanistic insights.

Like any enhanced sampling method, there is no “free lunch”
for WE path sampling over the conventional “brute-force”
manner of running sufficiently long molecular dynamics (MD)
simulations to capture the process of interest. Themain caveat of
the WE strategy is that key motions of the process of interest
may be orthogonal to the progress coordinate and sampled in a
brute-force manner. That said, effective progress coordinates
have been identified for a variety of complex biological processes
on the seconds-time scale or beyond. For example, WE
simulations have generated pathways and rates for a process
involving the escape of an uncharged drug-like ligand from a
completely buried cavity of a protein receptor.11 These
simulations involved a combination of progress coordinates
monitoring (i) the opening of the receptor cavity using the
solvent-accessible surface area of the cavity, (ii) the relative
orientation of the ligand and receptor using an “unbinding” root
mean squared deviation (RMSD) involving the heavy-atom
RMSD of the ligand after alignment on the receptor in the
bound state, and (iii) the ligand−receptor distance using the
minimum distance between the two binding partners. To
efficiently surmount barriers, bins were adaptively positioned
along these coordinates using the minimal adaptive binning
(MAB) method.25

Here, we present lessons learned from a ligand-unbinding
application in which the WE protocol described above for
uncharged ligands failed to generate successful events for a
charged ligand. Our application was a “stress test” for the WE
strategy and involved the unbinding of a highly charged ligand
from a protein receptor, i.e., the release of an ADP ligand from
the Eg5 motor protein (Figure 1), which is the rate-limiting step
in a key process of cell division.28 The generation of fully atomic,
continuous ligand-unbinding pathways and the prediction of
ligand koff values have long been of interest to the drug discovery
pipeline given that drug efficacy is often correlated with the
inverse of the koff, i.e., residency time of a ligand in the receptor
binding site.29

The simulation of ADP unbinding serves as a relevant and
challenging model system for developing methods to predict koff
values. Our lessons learned provide insights into the choice of
progress coordinate, manner of applying adaptive binning, and
the WE resampling procedure. Based on the latter lesson, we
have developed a minimal adaptive binless WE method (called
MABL) that generalizes our MAB scheme.25 Our MABL
method enables the efficient generation of continuous pathways
for our highly charged ligand-unbinding stress test. The MABL
method framework, along with many of the MABL variants
tested for this project, can be found at the following GitHub
repository: https://github.com/westpa/user_submitted_
scripts/tree/main/MABL.

■ THEORY
In this section, we provide a brief overview of the WE strategy
and outline the development of our minimal adaptive binless
WE resampler, the MABL method, which allowed us to sample
unbinding pathways for the highly charged ADP ligand. The
MABL method is an extension of the MAB strategy for binless
resampling, which provides greater flexibility and efficiency gains
compared to the MAB method.
Weighted Ensemble (WE) Strategy. The WE strategy

involves running multiple weighted trajectories in parallel and
periodic application of a resampling procedure at fixed short
time intervals τ. This procedure involves replicating and
terminating trajectories to provide an even coverage of
configurational space. Trajectories that populate less-visited
regions of configurational space are replicated to enhance their
success, dividing their statistical weight among the “split”
trajectories. Trajectories that populate already visited regions are
terminated, merging their statistical weight with that of another
trajectory in the same region. The combination of running MD
for a resampling time interval of τ and applying the resampling
procedure constitutes a single WE iteration.
Minimal Adaptive Binning (MAB) Method with Multi-

ple Regions. To efficiently surmount high energy barriers, we
previously developed the minimal adaptive binning (MAB)
method for adaptive placement of bins along a progress
coordinate during a WE simulation.25 This method populates
less-visited regions of state space by adaptively placing bins near
the leading edge of progress and near bottleneck regions. Bins
are also evenly spaced between the lagging and leading edges of
the progress coordinate. Bin positions are determined after each
resampling time interval τ.

For systems with particularly large barriers, one issue with the
MABmethod is the generation of trajectories with extremely low
weights due to oversplitting�that is, repeatedly splitting the
same leading trajectories. These very low weights can hinder
convergence to a steady state, which is essential for obtaining
reliable rate estimates. To reduce the likelihood of oversplitting,
a multi-MAB scheme can be employed.11,30 In this approach, the

Figure 1.ADP-bound Eg5motor protein. Crystal structure of the ADP-
bound Eg5 motor protein (PDB code: 1II6).26 As a rate-limiting step
for cell division, ADP release from Eg5 has been targeted for the design
of allosteric inhibitors.27
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progress coordinate is divided into several, relatively large
regions, and a separate MAB scheme is nested within each
region (Figure 2). This use of multiple, independent MAB

schemes is conceptually similar to other path sampling
strategies, such as transition interface path sampling31 and the
use of WE simulations between milestones in the weighted
ensemble milestoning (WEM) method.32 The larger regions in
which MAB bins are nested are defined by the user prior to the
simulation and should reflect meaningful physical aspects of how
the coordinates intersect. For example, in a recent WE
application to the escape of an uncharged, drug-like ligand
from a completely buried protein receptor,11 the receptor cavity
solvent-accessible surface area (SASA) needed to be binned
more finely when unbinding RMSD was low because at high
unbinding RMSD, the cavity would have had to already be open.
Therefore, one MAB region was placed at a low unbinding
RMSD and another at a high unbinding RMSD.

Minimal Adaptive Binless (MABL) Method. While the
MAB method is efficient in surmounting large barriers, the
computational expense of adaptive binning greatly increases
with multidimensional progress coordinates. To enable efficient
WE resampling of the high-dimensional state space, we have
developed a minimal adaptive binless (MABL) method for WE
simulations. In contrast to binless WE methods such as the
Resampling of Ensembles by Variance Optimization (REVO)
method,14 which utilizes pairwise RMSD “distances” to split and
merge trajectories, our MABL method is a minimal, intuitive
binless scheme. Similar to our binned MAB method, the MABL
method splits trajectories at the leading edge along one or
multiple progress coordinates.

At the heart of the MABL method is the use of a progress
score, denoted as S, which quantifies the combined progress
along multiple coordinates at a computational cost comparable
to tracking a single coordinate. This score is calculated for each
trajectory i after propagating dynamics for a short time interval τ
and reflects the trajectory’s advancement�on a scale of 0 to 1�
along each m coordinate of progress q between an initial value
qm,i and target value qm,t along M total coordinates:
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where qm is the current value of coordinatem of trajectory i. The
initial and target values of each coordinate are user-defined at the
start of the simulation and can be adjusted on the fly during a
simulation. The score S is calculated as a product of the progress
along each individual coordinate, enabling the inclusion of
multiple coordinates in a single metric. This allows for flexible
and comprehensive monitoring of the overall simulation
progress. The scaling factors Cm enable users to tune the
influence of each coordinate on the overall progress score. This
adjustment serves a similar purpose to the multi-MAB scheme:
to emphasize or de-emphasize certain progress measures

Figure 2. Basic illustration of the multi-MAB method. In the top
schematic, a single MAB scheme (MABmethod) covers the entire span
of the progress coordinate, which can yield trajectories with extremely
low weights due to oversplitting (i.e., repeated splitting of the same)
leading trajectories. In the bottom scheme, the progress coordinate is
divided into multiple regions, and a separate MAB scheme is nested in
each region (multi-MAB method). Nesting multiple MAB schemes in
larger regions reduces the generation of leading trajectories with
extremely low weights.

Figure 3. The minimal adaptive binless (MABL) method for WE simulations. (A) Workflow for the MABL method. (B) Illustration of the splitting
step in the WE resampling procedure. The “before” box shows a trajectory distribution after the resampling time interval τ, where trajectories with
varying weights (represented by circle size) are ranked by a progress score S (see eq 1; in this example, the only coordinate in S is the distance along the
x axis). The topN = 2 trajectories (trajectories #1 and #2) are split, yielding the child trajectories in the “after” box. (C) Illustration of the merging step
in the WE resampling procedure. To maintain a fixed total number of trajectories (here, five trajectories), the bottom N = 2 trajectories are merged.
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depending on the expected relevance at difference stages of the
simulated process.

To reduce the likelihood of oversplitting leading trajectories, a
balance term 1/−ln(P) is included, where P is the statistical
weight of the trajectory being considered. By taking the
fractional, negative log of P, lower-weight trajectories would
be less favored for splitting and higher-weight trajectories would
be more favored for splitting, thereby facilitating the flow of
probability away from the initial state.

As illustrated in Figure 3, theWE resampling procedure in the
MABL method begins by ranking all trajectories by their
progress score S. To maintain a constant number of trajectories,
the top N scoring trajectories are split, while the bottom N
scoring trajectories are merged. Although the optimal value ofN
was not extensively benchmarked in our initial simulations, we
found that N = 5 consistently facilitated the generation of
productive ADP unbinding pathways. Based on this observation,
we recommend choosingN to be ∼10−20% of the total number
of trajectories in the WE simulation. It is important to note that
N cannot exceed 50% of the total number of trajectories as a
single trajectory cannot be selected for both splitting and
merging in the same resampling step. In accordance with WE
resampling rules, when trajectories are merged, the surviving
trajectory is selected probabilistically by the statistical weights of
the candidates being considered.

Compared with a binned WE method, our binless MABL
method greatly reduces the number of adjustable parameters for
running aWE simulation, especially for more complex processes
such as receptor−ligand unbinding. In particular, the use of a
single progress score involves (i) defining only a range of values
for the progress coordinate rather than dividing a progress
coordinate into bins and, optionally, (ii) specifying the relative
importance of different progress coordinates rather than the
complex task of nesting a progress coordinate within another
progress coordinate.

■ METHODS
Preparation of the Initial State Ensemble. All system

preparation was performed using the tleap program of the
Amber software package.33 The Eg5-ADP complex was
prepared starting from heavy-atom coordinates of the complex
from the crystal structure (PDB: 1II6),26 protonating titratable
residues for neutral pH, and then solvating the system in a
truncated octahedral box of explicit water molecules with a 16 Å
clearance between the complex and the edge of the box. To
mimic the experimental salt concentration28 of 100 mM NaCl,
73 Na+ ions and 73 Cl− ions were placed in the solvent box. The
protein was treated with the Amber ff19SB force field34 and the
waters with the OPCwater model.35 The ions, including a single
Mg2+ ion in complex with ADP, were treated with Li-Merz 12−
6−4 parameters compatible with OPC water,36 and the ADP
ligand was treated with parameters compatible with the Amber
ff19SB force field.37 Short-range interactions were truncated at
10 Å, and long-range electrostatic interactions were treated
using the particle mesh Ewald method.38 The system was
energy-minimized for 10,000 steps before heating for 20 ps with
position restraints on all solute heavy atoms to 298 K at constant
volume with a weak Langevin thermostat using a collision
frequency of 1 ps−1. Following heating, the system was
equilibrated for 1 ns with position restraints on all solute
heavy atoms at a constant pressure with a Monte Carlo barostat,
with pressure changes attempted every 0.2 ps. Finally, an

additional 1 ns of constant-pressure equilibration was performed
after removal of the solute heavy-atom restraints.
WE Simulations. All WE simulations were run using the

WESTPA 2.0 software package,39 a resampling time interval of
50 ps, and initiated from the equilibrated bound structure of the
Eg5/ADP system. All MD simulations were run using the
pmemd.cuda GPU-accelerated dynamics engine of the Amber
22 package33 at a constant temperature (298 K) and pressure (1
atm) using the weak Langevin thermostat and Monte Carlo
barostat mentioned above for the equilibration procedure.

The multidimensional progress coordinate used in the MABL
method incorporated the following metrics, each representing a
different dimension of progress.

• Unbinding RMSD.The heavy-atom RMSD of the ligand,
calculated after aligning the protein receptor to the initial
bound-state structure. Alignment was restricted to
receptor regions with relative low RMS fluctuations
(residues 18−364), as identified by conventional MD
simulations.

• Ligand−receptor interaction energy (Eint). The non-
bonded interaction energy between the ligand and the
receptor, including both van der Waals and electrostatic
contributions. This was defined as the total energy of the
ligand−receptor complex minus the sum of the individual
energies of the ligand and receptor.

• Ligand−receptor distance. The minimum separation
distance between any atom of the receptor and ligand.

This last metric was primarily used to define key states such as
the unbound state, bound state, and, if necessary, an encounter-
complex intermediate. While it may have been conceptually
cleaner to test each coordinate individually within the MABL
framework, all three coordinates were ultimately necessary to
capture the ADP unbinding process.

We compare our MABLWE simulation with aWE simulation
run with a multi-MAB strategy. The multi-MAB WE simulation
was run with a target number of four trajectories per bin. A four-
dimensional progress coordinate was employed consisting of (i)
the unbinding RMSD of the ADP ligand after alignment on the
Eg5 receptor, (ii) the ligand−receptor interaction energy, (iii)
the ligand−receptor separation distance, and (iv) the minimum
separation distance between the phosphate tail of the ADP
ligand and the Eg5 receptor. For each dimension of this progress
coordinate, outer bin boundaries of [0, 7.5, 10.5, ‘inf’], [‘-inf’, 10
‘inf’], [0, 6, ‘inf’], and [0, 6, ‘inf’] were defined.

Four MAB schemes were nested within the outer bins. The
first MAB scheme was intended to sample increasing ligand
RMSD and was placed at [3, 55, 5, 5] and contained [5, 1, 1, 1]
MAB bins per dimension with directions of [1, −1, 1, 1]. The
secondMAB scheme was intended to sample increasing ligand−
receptor distance to higher RMSD values and was placed at [8,
55, 5, 5] and contained [5, 1, 5, 1]MAB bins per dimension with
directions of [1, −1, 1, 1]. The third MAB scheme was intended
to sample interaction energies after the RMSD had been
increased over 10 Å and was placed at [11, 55, 5, 5] and
contained [1, 5, 1, 1]MAB bins per dimension with directions of
[1, −1, 1, 1]. The fourth and final MAB scheme was intended to
focus sampling on increasing theminimum distance between the
ligand’s phosphate tail and the receptor while also still focusing
on sampling the interaction energy and was placed at [11, 5, 5, 5]
and contained [1, 5, 1, 5] MAB bins per dimension with
directions of [1, −1, 1, 1].
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The MABL WE simulation was conducted with a fixed
number of 40 trajectories per WE iteration. Progress scores in
MABL were calculated using three quantities: (1) the RMSD of
the ligand following alignment on the receptor, (2) the
interaction energy between the ligand and receptor, and (3)
the minimum distance between the ligand and receptor. In
contrast to the multi-MAB simulations, the minimum distance
between the ligand’s phosphate tail and the receptor was
excluded from the MABL simulations. This choice was based on
extensive testing, which revealed that the measurement was not
necessary to achieve successful unbinding events. Since the
metric was ultimately not needed, we do not expect it to have
significantly impacted sampling efficiency in the multi-MAB
simulations, and thus, comparisons between MABL and multi-
MAB simulations remain valid. For the RMSD, progress was
evaluated between 0 and 25 Å; for the interaction energy,
between 350 and −200 kcal/mol; and for the ligand−receptor
distance, between 0 and 10 Å. In addition, to prevent the ligand
from becoming “trapped” in nearby regions of the binding
pocket, trajectories with RMSD values between 10 and 13 Å had
their progress scaled by a factor of 0.8. These bounding values
were selected based on preliminary WE simulations using an
MAB scheme or multi-MAB scheme.

■ RESULTS AND DISCUSSION
In this section, we present in detail the lessons learned from our
successes and failures from WE simulations of a stress test: the
unbinding process involving the charged ADP ligand from the
Eg5 protein receptor. Among 44 different protocols for WE
simulations of ADP unbinding from Eg5, we generated over 43.8
μs of aggregate simulation time. In this set ofWE simulations, we
tested a variety of progress coordinates, binning schemes, and
criteria for the WE resampling procedure. We learned two main
lessons for applying WE simulations to study ligand unbinding
that are particularly relevant to charged ligands. These lessons
led to the development of our binless WE method, the MABL
method, which was instrumental in enabling the efficient
generation of ADP unbinding events.
Lesson #1: Both Energetic and Structural Features Are

Necessary for Monitoring Unbinding of a Charged
Ligand. Effective Progress Coordinates for the Unbinding
of Uncharged Ligands Are Not Sufficient for Charged
Ligands. While previous WE studies have found the unbinding
RMSD to be an effective progress coordinate for simulating
unbinding events with uncharged ligands,11 our tests revealed
that this metric was not an effective progress coordinate for the
unbinding of the charged ADP ligand. This result is due to the
fact that the unbinding RMSD does not provide a continuous
range of values that is sufficiently large to capture incremental
amounts of progress toward the target unbound state. The
detection of incremental amounts of progress is crucial for
charged ligands given their tighter binding affinity for the protein
receptor.

The WE strategy, when using a multidimensional progress
coordinate, is most effective when one dimension has many
“units” of progress toward the target state that simultaneously
contribute to larger units of progress in other dimensions. For
instance, in the case of receptor−ligand unbinding, increases in
ligand−receptor interaction energy should (at least eventually)
translate to increases in unbinding RMSD, which, in turn,
translate to increases in receptor−ligand distance (the main, and
most broad, determinant of success). In cases where the ligand is
uncharged, unbinding RMSD may be sufficient as a progress

coordinate because progress in unbinding RMSD can directly
contribute to progress in receptor−ligand distance. However, in
the case of charged-ligand unbinding, the tighter interactions
between the ligand and receptor compress the range of progress
“units” available to the unbinding RMSD, rendering it not as
effective. To overcome this, we identified and employed a more
relevant coordinate with an order of magnitude more progress
units that the WE strategy could utilize: the interaction energy.
Interaction Energy Is an Effective Progress Coordinate for

Sampling Charged-Ligand Unbinding. The ligand−receptor
interaction energy, with a large range of possible values due to
electrostatic interactions, was effective as a progress coordinate
for charged-ligand unbinding. By considering the interaction
energy along with the unbinding RMSD and the ligand−
receptor distance, we were able to get close to generating ligand-
unbinding pathways with the MAB method but were heavily
limited by the large computational cost of binning in multiple
dimensions of the progress coordinate. With the inclusion of the
interaction energy as a coordinate in the MABL progress score,
we were finally able to generate ligand-unbinding events (Figure
4).

Backward Progress Can Be Essential. As is evident in Figure
4, repulsive interactions between the ligand and receptor occur
immediately before the ligand dissociates from the receptor.
Such interactions may serve as a “springboard” for launching the
ligand away from the charged regions of the receptor binding
pocket. Said another way, backward motion along a progress
coordinate can be not only useful, but essential for enhancing the
sampling of pathways for unbinding of the charged ADP ligand.

In our initial efforts with the MABL method that employed a
progress score consisting of the interaction energy, unbinding
RMSD, and ligand−receptor distance, our WE simulations
resulted in trapping of the ligand−receptor system in
conformations with large unbinding RMSD values. These
trapped conformations corresponded to potential encounter

Figure 4. Repulsive ligand−receptor interactions facilitate ligand
unbinding. Probability distribution as a function of the ligand−receptor
interaction energy (Eint) and ligand−receptor separation distance for a
single WE simulation of the Eg5-ADP unbinding process. A
representative unbinding pathway is traced in black. Repulsive
ligand−receptor interactions (Eint > 0; delineated in red) appear to
facilitate the dissociation of the ADP ligand from the Eg5 protein
receptor. Given the extremely low probabilities in this simulation,
which is far from a steady state, we interpret this distribution
qualitatively.
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complexes in which the ligand was bound to the receptor but not
in its native bound pose.

To enable successful unbinding events, we allowed backward
progress along the unbinding RMSD coordinate by reducing its
relative contribution to the overall progress score by 20% in the
range of 10 to 13 Å, where the ligand was getting trapped in a
non-native bound conformation. After implementing this
adjustment, the ADP ligand was able to fully dissociate from
the Eg5 receptor, as shown in Figure 4.
Lesson #2: While Our Binless WE Method Is More

Efficient in Capturing Rare Events, Care Must Be
Exercised in the Merging of Trajectories. Our Minimal
Adaptive Binless (MABL) Method Enables Efficient WE
Simulations with a High-Dimensional Progress Coordinate.
Using a progress score/coordinate that consists of the ligand−
receptor interaction energy, unbinding RMSD, and the ligand−
receptor distance, our binless MABL method was >50% more
efficient at generating the first ligand-unbinding event compared
to our most effective binned resampler employing the multi-
MAB scheme. The aggregate simulation time needed for the
MABL method to generate the first ligand-unbinding event was
only 2.0 μs compared with 4.7 μs for the multi-MAB method. In
addition, our MABL method maintains a fixed number of
trajectories throughout the simulation�a desirable feature that
facilitates the planning of computational resources to allocate for
a WE simulation.
Care Must Be Taken when Merging Trajectories within a

Binless Framework.While the progress score used in theMABL
method is primarily focused on the splitting of promising
trajectories, care must be exercised in the groupings of
trajectories to consider for merging within a binless WE method
for several reasons.

First, if nonredundant trajectories are grouped for merging,
trajectories that are very different from the surviving trajectory
could be terminated. The loss of nonredundant trajectories
could hamper sampling of “breakout events” and generate a less-
diverse path ensemble. This issue has been addressed for the
original Huber and Kim WE framework in the recent
development of an equal-weight resampler.40

Second, the total probability may become concentrated in just
one or a few trajectories, leading to much lower-than-average
probabilities of trajectories, resulting in much lower-than-
average probabilities for those at the leading edge of sampling.
We were able to alleviate�but not entirely eliminate�this
accumulation by incorporating trajectory weights into the
progress score. Additional strategies to more effectively prevent
large-scale probability accumulation will be explored in future
work.

Based on our efforts to refine theWE resampling procedure in
our MABL method, we present a cautionary example where we
violated one of the two rules that must be followed by a
resampling procedure to avoid introducing statistical bias into
the WE simulation:

1. Trajectory weights must always sum to a total probability
of one, and

2. When evaluating trajectories for merging, the surviving
trajectory must be chosen according to its weight
(probability) or randomly chosen, if more than one
candidate exists with the same weight.1

In our example, we broke the second rule when attempting to
select the surviving trajectory based on their progress score.
While the progress score contains a weight-based balance term

(see Methods), this criteria for selecting the surviving trajectory
resulted in the termination of a higher-weight trajectory and the
subsequent merging of its weight onto a lower-weight surviving
trajectory. This merging event led to an unphysical result where
there was no reduction in weights as the trajectories approached
the target state (i.e., as if no barriers exist in the unbinding
process) due to two high-weight trajectories ending up on a “fast
track” from the initial to the target state (Figure 5). Our example

underscores the importance of following not just the first rule
but also the second rule for the WE resampling procedure that
involves the random selection of trajectories that survive a
merging event.
Strategy for Enforcing “Soft” Threshold Values for

Trajectory Weights. In certain WE studies, the use of minimum
and maximum threshold values for trajectory weights has
prevented the weights from becoming extremely small and
dominating the path ensemble, respectively.12,14 However, hard
limits on trajectory weights can hinder progress toward the
target state by preventing any splitting of “breakaway”
trajectories. To achieve a middle ground between being too
strict and too relaxed with trajectory weights, we introduced
“soft” thresholds into the MABL method by incorporating
trajectory weights into the progress score. Based on this progress
score, higher-weight trajectories are chosen for splitting, and
lower-weight trajectories are considered for merging. The “soft”
threshold term used in our progress score can be further
modified and serves as a starting point for exploring the use of
this more flexible form of trajectory weight thresholds.

■ CONCLUSIONS
We have presented lessons learned from WE simulations of a
challenging stress test: the unbinding of a charged ligand,
specifically the release of ADP from the Eg5 motor protein. Our
lessons are drawn from >43.8 μs of aggregate WE simulation
time across 44 different simulation protocols. Many of our
unsuccessful attempts ultimately led to the development of a
newWE strategy�the MABLmethod�a binless version of our
previously developed MAB method.

The MABL method performs WE resampling using a single
progress score that integrates progress along multiple
coordinates. This binless approach proved to be more efficient
than our best binned strategies when handling multiple progress

Figure 5.Time-evolution of the probability distribution as a function of
ligand−receptor distance from a WE simulation in which the choice of
trajectories for merging breaks the rules. The preferential merging of
heavy-weight trajectories in an initial version of the MABL method
violated the statistical rules of the WE resampling procedure.1 As a
result, a few heavy-weight trajectories make a “bee-line” from the initial
to target state without any splitting of the trajectories.
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coordinates. Further, MABL maintains a fixed number of total
trajectories throughout a simulation, which simplifies computa-
tional resource allocation.

Despite the complexity of simulating the unbinding of a
charged ligand, we successfully generated unbinding pathways
using theMABLmethod by incorporating three key features: (i)
inclusion of ligand−receptor interaction energy in the progress
score, (ii) enabling backward progress by reducing the weight of
the unbinding RMSD coordinate where the ligand was prone to
becoming trapped, and (iii) mitigating oversplitting at the
leading edge of sampling by integrating trajectory weights into
the progress score. Although rate constants could not yet be
estimated from these initial pathways, they represent an
important first step toward that goal.

Finally, we implemented our MABL method within the open-
source WESTPA software package, providing a framework for
future development of more advanced binless strategies to
address complex biomolecular processes.

■ AUTHOR INFORMATION

Corresponding Author
Lillian T. Chong − Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States;

orcid.org/0000-0002-0590-483X; Email: ltchong@
pitt.edu

Authors
Anthony T. Bogetti − Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States;
Present Address: Laufer Center for Physical and
Quantitative Biology, Stony Brook University, Stony
Brook, NY 11794, United States; orcid.org/0000-0003-
0610-2879

Darian T. Yang − Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States;
Present Address: Department of Biology Biocenter, Room
1.0.20 Ole Maaløes Vej 5 DK-2200 Copenhagen N,
Denmark; orcid.org/0000-0002-8654-3529

Hannah E. Piston − Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States

David N. LeBard − OpenEye, Cadence Molecular Sciences,
Santa Fe, New Mexico 87508, United States; orcid.org/
0000-0002-0979-800X

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.5c03809

Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
Funding
This work was supported by NIH grant R01 GM1151805 to
L.T.C. and University of Pittsburgh AndrewMellon Predoctoral
Fellowships to A.T.B. and D.T.Y. Support was also provided by
an OE Scientific Graduate Student Internship involving A.T.B.
under the mentorship of D.N.L. Computational resources were
provided by NSF XSEDE allocation TG-MCB100109 to L.T.C.
and the University of Pittsburgh Center for Research
Computing, RRID:SCR_022735, through the H2P cluster,
which is supported by NSF award number OAC-2117681.

Notes
The authors declare the following competing financial
interest(s): LTC is a member of the Scientific Advisory Board
for OpenEye Scientific, Cadence.

■ ACKNOWLEDGMENTS
We thank AJ Pratt for initial efforts and Anthony Nicholls for
insightful discussions.

■ REFERENCES
(1) Huber, G. A.; Kim, S. Weighted-ensemble Brownian dynamics

simulations for protein association reactions. Biophys. J. 1996, 70, 97−
110.
(2) Zuckerman, D. M.; Chong, L. T. Weighted Ensemble Simulation:

Review ofMethodology, Applications, and Software. Annu. Rev. Biophys
2017, 46, 43−57.
(3) Bogetti, X.; Bogetti, A.; Casto, J.; Rule, G.; Chong, L.; Saxena, S.

Direct observation of negative cooperativity in a detoxification enzyme
at the atomic level by Electron Paramagnetic Resonance spectroscopy
and simulation. Protein Sci. 2023, 32, No. e4770.
(4) Sztain, T.; Ahn, S. H.; Bogetti, A. T.; Casalino, L.; Goldsmith, J. A.;

Seitz, E.; McCool, R. S.; Kearns, F. L.; Acosta-Reyes, F.; Maji, S.; et al. A
glycan gate controls opening of the SARS-CoV-2 spike protein. Nat.
Chem. 2021, 13, 963−968.
(5) Adhikari, U.; Mostofian, B.; Copperman, J.; Subramanian, S. R.;

Petersen, A. A.; Zuckerman, D. M. Computational Estimation of
Microsecond to Second Atomistic Folding Times. J. Am. Chem. Soc.
2019, 141, 6519−6526.
(6) Santhouse, J. R.; Leung, J. M. G.; Chong, L. T.; Horne, W. S.

Implications of the unfolded state in the folding energetics of
heterogeneous-backbone protein mimetics. Chem. Sci. 2022, 13,
11798−11806.
(7) Wang, D.; Tiwary, P. Augmenting Human Expertise in Weighted

Ensemble Simulations through Deep Learning based Information
Bottleneck. J. Chem. Theory Comput. 2024, 10371.
(8) Leung, J. M. G.; Frazee, N. C.; Brace, A.; Bogetti, A. T.;

Ramanathan, A.; Chong, L. T. Unsupervised Learning of Progress
Coordinates during Weighted Ensemble Simulations: Application to
NTL9 Protein Folding. J. Chem. Theory Comput. 2025, 21, 3691−3699.
(9) Saglam, A. S.; Chong, L. T. Protein-protein binding pathways and

calculations of rate constants using fully-continuous, explicit-solvent
simulations. Chem. Sci. 2019, 10, 2360−2372.
(10) Zwier, M. C.; Pratt, A. J.; Adelman, J. L.; Kaus, J. W.; Zuckerman,

D. M.; Chong, L. T. Efficient Atomistic Simulation of Pathways and
Calculation of Rate Constants for a Protein-Peptide Binding Process:
Application to the MDM2 Protein and an Intrinsically Disordered p53
Peptide. J. Phys. Chem. Lett. 2016, 7, 3440−3445.
(11) Silvestrini, M. L.; Solazzo, R.; Boral, S.; Cocco, M. J.; Closson, J.

D.; Masetti, M.; Gardner, K. H.; Chong, L. T. Gating residues govern
ligand unbinding kinetics from the buried cavity in HIF-2alpha PAS-B.
Protein Sci. 2024, 33, No. e5198.
(12) Lotz, S. D.; Dickson, A. UnbiasedMolecular Dynamics of 11 min

Timescale Drug Unbinding Reveals Transition State Stabilizing
Interactions. J. Am. Chem. Soc. 2018, 140, 618−628.
(13) Bogetti, A. T.; Zwier, M. C.; Chong, L. T. Revisiting Textbook

Azide-Clock Reactions: A ″Propeller-Crawling″ Mechanism Explains
Differences in Rates. J. Am. Chem. Soc. 2024, 146, 12828−12835.
(14) Donyapour, N.; Roussey, N. M.; Dickson, A. REVO: Resampling

of ensembles by variation optimization. J. Chem. Phys. 2019, 150,
244112.
(15) Yang, D. T.; Goldberg, A. M.; Chong, L. T. Rare-Event Sampling

using a Reinforcement Learning-Based Weighted Ensemble Method.
bioRxiv, 2024, DOI: 10.1101/2024.10.09.617475.
(16) Zhang, B. W.; Jasnow, D.; Zuckerman, D. M. The ″weighted

ensemble″ path sampling method is statistically exact for a broad class
of stochastic processes and binning procedures. J. Chem. Phys. 2010,
132, No. 054107.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.5c03809
ACS Omega XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lillian+T.+Chong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0590-483X
https://orcid.org/0000-0002-0590-483X
mailto:ltchong@pitt.edu
mailto:ltchong@pitt.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anthony+T.+Bogetti"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0610-2879
https://orcid.org/0000-0003-0610-2879
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Darian+T.+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8654-3529
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hannah+E.+Piston"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+N.+LeBard"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0979-800X
https://orcid.org/0000-0002-0979-800X
https://pubs.acs.org/doi/10.1021/acsomega.5c03809?ref=pdf
https://doi.org/10.1016/S0006-3495(96)79552-8
https://doi.org/10.1016/S0006-3495(96)79552-8
https://doi.org/10.1146/annurev-biophys-070816-033834
https://doi.org/10.1146/annurev-biophys-070816-033834
https://doi.org/10.1002/pro.4770
https://doi.org/10.1002/pro.4770
https://doi.org/10.1002/pro.4770
https://doi.org/10.1038/s41557-021-00758-3
https://doi.org/10.1038/s41557-021-00758-3
https://doi.org/10.1021/jacs.8b10735?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b10735?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D2SC04427G
https://doi.org/10.1039/D2SC04427G
https://doi.org/10.1021/acs.jctc.4c00919?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.4c00919?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.4c00919?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1101/2024.08.28.610178
https://doi.org/10.1101/2024.08.28.610178
https://doi.org/10.1101/2024.08.28.610178
https://doi.org/10.1039/C8SC04811H
https://doi.org/10.1039/C8SC04811H
https://doi.org/10.1039/C8SC04811H
https://doi.org/10.1021/acs.jpclett.6b01502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.6b01502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.6b01502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.6b01502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/pro.5198
https://doi.org/10.1002/pro.5198
https://doi.org/10.1021/jacs.7b08572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b08572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b08572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.4c03360?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.4c03360?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.4c03360?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.5100521
https://doi.org/10.1063/1.5100521
https://doi.org/10.1101/2024.10.09.617475
https://doi.org/10.1101/2024.10.09.617475
https://doi.org/10.1101/2024.10.09.617475?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.3306345
https://doi.org/10.1063/1.3306345
https://doi.org/10.1063/1.3306345
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.5c03809?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(17) Nunes-Alves, A.; Kokh, D. B.; Wade, R. C. Ligand unbinding
mechanisms and kinetics for T4 lysozyme mutants from tauRAMD
simulations. Curr. Res. Struct Biol. 2021, 3, 106−111.
(18) Mollica, L.; Decherchi, S.; Zia, S. R.; Gaspari, R.; Cavalli, A.;

Rocchia, W. Kinetics of protein-ligand unbinding via smoothed
potential molecular dynamics simulations. Sci. Rep 2015, 5, 11539.
(19) Wolf, S.; Amaral, M.; Lowinski, M.; Vallee, F.; Musil, D.;

Guldenhaupt, J.; Dreyer, M. K.; Bomke, J.; Frech, M.; Schlitter, J.;
Gerwert, K. Estimation of Protein-Ligand Unbinding Kinetics Using
Non-Equilibrium Targeted Molecular Dynamics Simulations. J. Chem.
Inf Model 2019, 59, 5135−5147.
(20) Park, S.; Schulten, K. Calculating potentials of mean force from

steered molecular dynamics simulations. J. Chem. Phys. 2004, 120,
5946−5961.
(21) Tiwary, P.; Limongelli, V.; Salvalaglio, M.; Parrinello, M. Kinetics

of protein-ligand unbinding: Predicting pathways, rates, and rate-
limiting steps. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E386−E391.
(22) Wang, J.; Miao, Y. Ligand Gaussian Accelerated Molecular

Dynamics 3 (LiGaMD3): Improved Calculations of Binding
Thermodynamics and Kinetics of Both Small Molecules and Flexible
Peptides. J. Chem. Theory Comput. 2024, 20, 5829−5841.
(23) Ray, D.; Gokey, T.; Mobley, D. L.; Andricioaei, I. Kinetics and

free energy of ligand dissociation using weighted ensemble milestoning.
J. Chem. Phys. 2020, 153, 154117.
(24) Votapka, L.W.; Ojha, A. A.; Asada, N.; Amaro, R. E. Prediction of

Threonine-Tyrosine Kinase Receptor-Ligand Unbinding Kinetics with
Multiscale Milestoning and Metadynamics. J. Phys. Chem. Lett. 2024,
15, 10473−10478.
(25) Torrillo, P. A.; Bogetti, A. T.; Chong, L. T. A Minimal, Adaptive

Binning Scheme for Weighted Ensemble Simulations. J. Phys. Chem. A
2021, 125, 1642−1649.
(26) Turner, J.; Anderson, R.; Guo, J.; Beraud, C.; Fletterick, R.;

Sakowicz, R. Crystal structure of the mitotic spindle kinesin Eg5 reveals
a novel conformation of the neck-linker. J. Biol. Chem. 2001, 276,
25496−25502.
(27) Brier, S.; Lemaire, D.; DeBonis, S.; Forest, E.; Kozielski, F.

Molecular dissection of the inhibitor binding pocket of mitotic kinesin
Eg5 reveals mutants that confer resistance to antimitotic agents. J. Mol.
Biol. 2006, 360, 360−376.
(28) Cochran, J. C.; Gilbert, S. P. ATPase mechanism of Eg5 in the

absence of microtubules: insight into microtubule activation and
allosteric inhibition by monastrol. Biochemistry 2005, 44, 16633−
16648.
(29) Lu, H.; Tonge, P. J. Drug-target residence time: critical

information for lead optimization. Curr. Opin Chem. Biol. 2010, 14,
467−474.
(30) Zhang, S.; Thompson, J. P.; Xia, J.; Bogetti, A. T.; York, F.;

Skillman, A. G.; Chong, L. T.; LeBard, D. N. Mechanistic Insights into
Passive Membrane Permeability of Drug-like Molecules from a
Weighted Ensemble of Trajectories. J. Chem. Inf Model 2022, 62,
1891−1904.
(31) van Erp, T. S.; Moroni, D.; Bolhuis, P. G. A novel path sampling

method for the calculation of rate constants. J. Chem. Phys. 2003, 118,
7762−7774.
(32) Ray, D.; Stone, S. E.; Andricioaei, I. Markovian Weighted

Ensemble Milestoning (M-WEM): Long-Time Kinetics from Short
Trajectories. J. Chem. Theory Comput 2022, 18, 79−95.
(33) Case, D. A.; Aktulga, H. M.; Belfon, K.; Cerutti, D. S.; Cisneros,

G. A.; Cruzeiro, V. W. D.; Forouzesh, N.; Giese, T. J.; Gotz, A. W.;
Gohlke, H.; et al. AmberTools. J. Chem. Inf Model 2023, 63, 6183−
6191.
(34) Tian, C.; Kasavajhala, K.; Belfon, K. A. A.; Raguette, L.; Huang,

H.; Migues, A. N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; Simmerling,
C. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained
against Quantum Mechanics Energy Surfaces in Solution. J. Chem.
Theory Comput 2020, 16, 528−552.
(35) Izadi, S.; Anandakrishnan, R.; Onufriev, A. V. Building Water

Models: ADifferent Approach. J. Phys. Chem. Lett. 2014, 5, 3863−3871.

(36) Li, P.; Song, L. F.; Merz, K. M., Jr. Parameterization of highly
charged metal ions using the 12−6-4 LJ-type nonbonded model in
explicit water. J. Phys. Chem. B 2015, 119, 883−895.
(37) Meagher, K. L.; Redman, L. T.; Carlson, H. A. Development of

polyphosphate parameters for use with the AMBER force field. J.
Comput. Chem. 2003, 24, 1016−1025.
(38) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;

Pedersen, L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys.
1995, 103, 8577−8593.
(39) Russo, J. D.; Zhang, S.; Leung, J. M. G.; Bogetti, A. T.;

Thompson, J. P.; DeGrave, A. J.; Torrillo, P. A.; Pratt, A. J.; Wong, K. F.;
Xia, J.; et al. WESTPA 2.0: High-Performance Upgrades for Weighted
Ensemble Simulations and Analysis of Longer-Timescale Applications.
J. Chem. Theory Comput 2022, 18, 638−649.
(40) Plotnikov, D.; Ahn, S.-H. Optimization of the resamplingmethod

in the weighted ensemble simulation toolkit with parallelization and
analysis (WESTPA). J. Chem. Phys. 2024, 161, No. 046101.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.5c03809
ACS Omega XXXX, XXX, XXX−XXX

H

https://doi.org/10.1016/j.crstbi.2021.04.001
https://doi.org/10.1016/j.crstbi.2021.04.001
https://doi.org/10.1016/j.crstbi.2021.04.001
https://doi.org/10.1038/srep11539
https://doi.org/10.1038/srep11539
https://doi.org/10.1021/acs.jcim.9b00592?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00592?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1651473
https://doi.org/10.1063/1.1651473
https://doi.org/10.1073/pnas.1424461112
https://doi.org/10.1073/pnas.1424461112
https://doi.org/10.1073/pnas.1424461112
https://doi.org/10.1021/acs.jctc.4c00502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.4c00502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.4c00502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.4c00502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0021953
https://doi.org/10.1063/5.0021953
https://doi.org/10.1021/acs.jpclett.4c02332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.4c02332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.4c02332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c10724?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c10724?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1074/jbc.M100395200
https://doi.org/10.1074/jbc.M100395200
https://doi.org/10.1016/j.jmb.2006.04.062
https://doi.org/10.1016/j.jmb.2006.04.062
https://doi.org/10.1021/bi051724w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi051724w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi051724w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cbpa.2010.06.176
https://doi.org/10.1016/j.cbpa.2010.06.176
https://doi.org/10.1021/acs.jcim.1c01540?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c01540?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c01540?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1562614
https://doi.org/10.1063/1.1562614
https://doi.org/10.1021/acs.jctc.1c00803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c01153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00591?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00591?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz501780a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz501780a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp505875v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp505875v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp505875v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.10262
https://doi.org/10.1002/jcc.10262
https://doi.org/10.1063/1.470117
https://doi.org/10.1021/acs.jctc.1c01154?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01154?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0197141
https://doi.org/10.1063/5.0197141
https://doi.org/10.1063/5.0197141
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.5c03809?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

