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Path-sampling strategies for sim
ulating rare events in
biomolecular systems
Lillian T Chong1, Ali S Saglam1 and Daniel M Zuckerman2
Despite more than three decades of effort with molecular

dynamics simulations, long-timescale (ms and beyond)

biologically relevant phenomena remain out of reach in most

systems of interest. This is largely because important

transitions, such as conformational changes and (un)binding

events, tend to be rare for conventional simulations (<10 ms).

That is, conventional simulations will predominantly dwell in

metastable states instead of making large transitions in

complex biomolecular energy landscapes. In contrast, path

sampling approaches focus computing effort specifically on

transitions of interest. Such approaches have been in use for

nearly 20 years in biomolecular systems and enabled the

generation of pathways and calculation of rate constants for ms

processes, including large protein conformational changes,

protein folding, and protein (un)binding.
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Introduction
Advances in computing hardware and software [1–3] along

with record-setting molecular dynamics (MD) simula-

tions, in terms of both length [5] and system size [6] bode

well for the future of simulation. Nevertheless, the capac-

ity of MD for investigating long timescales of biological
interest remains inadequate, particularly as investigators set

their sights on ever larger and more complex systems [7,8].

Path sampling approaches can substantially increase the

‘reach’ of MD in simulating rare events such as protein

conformational changes, (un)folding, and (un)binding, by

focusing computational effort on the functional transi-
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tions rather than the stable states (Figure 1) — without

introducing bias in the results. In particular, such

approaches exploit the fact that for rare events, the

duration of the transition event itself (tb) is much shorter

than the dwell time (tdwell) in the preceding metastable

region (tb� tdwell). Even when there is not a clear sepa-

ration of timescales between tb and tdwell, path sampling

may offer a considerable advantage over straight-ahead

MD, as described in the next section (‘Path sampling

methods and recent advances’).

In addition to providing rigorous estimates of rate con-

stants, a key strength of path sampling approaches is the

generation of an ensemble of transition trajectories. The

trajectories themselves yield the full sequence of inter-

mediate configurations of a transition, which are essential

for characterizing the mechanism of a complex biological

process and too fleeting to be captured by laboratory

experiments. Further, the probabilistic description intrin-

sic to an ensemble quantifies pathway heterogeneity, the

importance of which remains to be understood in biomo-

lecular processes of different types.

Path-sampling methods have been advanced significantly

in recent years and appear to have reached a state of

maturity where theoretical underpinnings have been

clarified, and where essential commonalities can be dis-

cerned. However, the reader is cautioned that all of the

approaches have intrinsic limitations, sketched below,

and that path-sampling data must be critically analyzed

for undersampling to prevent unfounded interpretation.

We take this opportunity to survey key ideas and recent

progress in the field. We cover only approaches that are

well-founded in non-equilibrium statistical mechanics and

hence capable of yielding, for example, unbiased estimates

of rate constants and a true sample of the transition path

ensemble. We note that the related Markov state modeling

approach will be addressed separately in this issue.

Path sampling methods and recent advances
Conceptual framework

Path sampling approaches exploit the separation of time-

scales that typically occurs in biomolecular systems. Con-

sider the extreme example of attempting to observe

transient unfolding of a stable protein under native con-

ditions: unfolding events will be few and far between.

Path sampling approaches can explicitly focus computa-

tional effort on the unfolding event, bypassing the

lengthy dwells in the folded state.
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Figure 1

Rare conformational transitions in MD simulation. A schematized very

long MD trajectory which successfully transitions to basin B after

starting in A is superimposed over energy contours (gray lines). By

definition, every unbiased transition trajectory consists of (i) a dwell

period (blue) of duration tdwell prior to the last exit from the initial state

and (ii) the transition event itself (red) of duration tb. If tb� tdwell, then

path sampling strategies may be useful in focusing computational

effort on the transition process.
Path sampling can be useful for rare events even when the

separation of timescales is ambiguous. Consider another

extreme case where a single uncharged receptor and

ligand occupy a large volume, so that the probability of

complexation is very small on MD timescales. The time

for binding by diffusion arguably is the same as the

‘transition time’ (tb) in such a system and there is no

clear timescale separation. Yet path sampling approaches

can focus simulation effort on successful events, and even

account for the rareness of binding without bias [9�].
Likewise the conformational sampling of stable states

separated by low barriers can be efficiently accomplished

using path sampling [10,78�].
Figure 2

Schematic basis of path sampling strategies. An energy landscape (gray co

the timescale of typical MD simulations. (a) Some methods use full-length t

trajectory (brown) is perturbed via random trials (green) using a Metropolis M

importance sampling, a set of biased trajectories (dark blue) are reweighted

unbiased trajectory segments (brown) connecting bins (i and j), such as the

milestoning and non-equilibrium umbrella sampling. (c) Other approaches, s

strictly nested interfaces interpolating from A to B. Generally speaking, shor

full A-to-B transitions, and trajectory segments can be connected using rigo
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Though path sampling approaches can yield equilibrium

state populations and potentials of mean force, their

primary strength is a capacity to estimate non-equilibrium

observables such as rate constants. In the latter context,

the ability to account for directionality and history is

critical — particularly tracing back any given trajectory

to the most recently occupied state (A or B, ‘initial’ or

‘target’ state), which enables unbiased rate calculation

[11�,12,13]; see also [14,15]. This insight from path theory

has important practical implications for analyzing ordi-

nary MD simulations and avoiding the Markov assump-

tion [16].

Current path sampling approaches can be divided into the

following three categories for conceptual clarity.

Methods using complete paths

Two approaches work directly with complete A-to-B

transition paths (Figure 2a). Transition path sampling
(TPS) is based on Pratt’s suggestion to run Monte Carlo

(MC) simulations on entire trajectories [17] rather than on

the more familiar MC for configurations. Advanced by

Chandler and coworkers [18–20], TPS uses trial perturba-

tions to an existing A-to-B trajectory and a Metropolis

acceptance criterion. Dynamic importance sampling (DIMS),
proposed by Woolf [21] based on earlier work [22,23], also

uses complete paths. In DIMS, however, independent

transition trajectories are generated using biased dynam-

ics, and are then reweighted using the ratio of sampled to

true probability [24].

Methods using trajectory segments: region-to-region

Most current path-sampling approaches work procedur-

ally with trajectory segments, even if fully or nearly

continuous A-to-B transitions ultimately are produced.

As shown in Figures 2b,c, segment-based methods can be

categorized accordingly to whether partial transitions are
ntours) is shown for which the transition from basin A to B is rare on

ransition trajectories. In transition path sampling, an initial unphysical

onte Carlo procedure in trajectory space, whereas in dynamic

to conform with unbiased behavior. (b) Many methods use fully

weighted ensemble, or connecting interfaces (h and n), such as

uch as transition interface sampling and forward flux sampling, use

ter transitions among bins or interfaces are much more probable than

rous statistical mechanics to infer longer-time behavior.
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sampled between regions (‘bins’) or between interfaces.

Bin-to-bin transitions typically are sampled via trajectory

segments of fixed duration, whereas interfacial transitions

require ‘catching’ trajectories in the act of crossing.

Huber and Kim proposed the weighted ensemble (WE)

approach in 1996 [25], which was essentially a rediscovery

of the ‘splitting’ strategy described by Kahn in 1951 [26].

The basic idea is to classify configuration space into bins

among which transitions are affordably likely. A set of

unbiased trajectories is run in parallel, with replication of

segments that reach new bins, encouraging progress to-

ward B. Statistical weighting ensures unbiased results

[27], and the approach has been extended for steady state

and rate-constant calculations [28,29�]. The related adap-
tive multilevel splitting (AMS) approach uses trajectory

splitting within a different statistical formulation without

bins [30]. See also [31,32].

Underscoring the methodological convergence occurring

in the field, some interfacial approaches have now been

adapted for bin-to-bin sampling [33,34]. Markov state

models also operate in a bin-to-bin framework (see review

by Noe in this issue). The discrete path sampling approach
uses energy basins instead of bins [35–37]; see also

[38,39].

Approaches using trajectory segments: interface–

interface

Most current methods sample trajectory segments of

heterogeneous lengths that start and end on interfaces.

Some approaches require fully nested interfaces that

interpolate from initial to target state and others can

use nearly arbitrary interfaces — surfaces of arbitrary bins

tiling configuration space (Figure 2b,c).

With transition interface sampling (TIS), van Erp, Moroni,

and Bolhuis [11�] introduced an extension of TPS which

attempted to improve the rate-constant calculation by

using a series of partial-flux calculations for a set of nested

interfaces separating states A and B — see Figure 2c.

Intermediate TPS calculations are used to generate the

necessary TIS path ensembles. There have been a num-

ber of TIS extensions [40,41]. Forward flux sampling
(FFS) uses a similar formalism but instead runs standard

(not TPS) simulations between interfaces [42], and FFS

has been generalized [33]. See also [43].

Interfaces which may not be nested (e.g., boundaries of

Voronoi cells — see Figure 2b) are used in some

approaches. Non-equilibrium umbrella sampling (NEUS),
introduced by Dinner and coworkers, first showed how

to use interfaces for arbitrary cells which tile configuration

space in steady-state calculations [44] and was further

developed [13,45,46]. Milestoning, although originally in-

troduced by Faradjian and Elber for nested interfaces
Current Opinion in Structural Biology 2017, 43:88–94
[47], was later generalized for use with arbitrary interfaces

[48,49].

Limitations

All the approaches discussed here share the goal of

generating an ensemble of transition trajectories, and

hence they also share certain limitations. The focusing

of sampling on transition regions instead of stable states in

an unbiased manner typically requires that the transition

trajectories are correlated with one another (e.g., [19,27]).

Such correlations imply a reduction in information con-

tent: perhaps one in 100 transitions is truly independent.

Therefore, trajectories should be analyzed carefully for

correlations and sampling quality [9�,11�,29�,49]. For

methods where the path-sampled trajectories are not

correlated, there generally is another type of statistical

inefficiency [24].

Another practical concern regards software. Several path-

sampling packages are publicly available [50�,51–53], and

most require some parameter tuning. Algorithms which

examine trajectories at fixed time intervals, such as WE,

lend themselves to facile interoperability with a variety of

MD engines. Interface-based methods require ‘catching’

trajectories in the act of crossing boundaries, which al-

ready has been hard-wired in some packages [53,54], but

could represent a significant barrier for users desiring

alternative dynamics.

Successes
In recent years, path sampling approaches have enabled

the simulation of several types of long-timescale biologi-

cal processes that would not have been practical using

conventional simulation: large protein conformational

transitions, protein folding, and protein–ligand (un)bind-

ing.

Protein conformational transitions and folding

processes

Notable successes involving large protein conformational

transitions include simulations of substrate-induced con-

formational changes in enzymes and large conformational

transitions in membrane transport proteins. In studies

involving enzymes, milestoning has generated ms con-

formational transitions between the open and closed

states of the HIV reverse transcriptase [4,55], yielding

rate constants that are consistent with experiment

(Figure 3a). In studies involving membrane transport

proteins, the WE approach has generated pathways for

outward-to-inward-facing transitions in the sodium sym-

porter Mhp1 using coarse-grained simulations [56] and

the DIMS approach has generated transitions between

the cytoplasmic open conformation and perisplamic open

conformation of the lactose permease transporter using

atomistic simulations in implicit solvent [57]. For the

related problem of ion permeation, the WE approach
www.sciencedirect.com



Path-sampling strategies Chong, Saglam and Zuckerman 91

Figure 3

Path sampling successes. (a) Milestoning has generated pathways and calculated rate constants for substrate-induced transitions between the

open (gray) and closed (blue) conformations of HIV reverse transcriptase in complex with Mg2+ ions (yellow) and duplex DNA (green); for clarity,

only the p66 subunit is shown, although both p66 and p51 subunits were included in the simulations [4�]. (b) The WE approach has generated

pathways and calculated rate constants for the protein–peptide binding process involving the MDM2 protein (gray) and an intrinsically disordered

p53 peptide (yellow) [78�].
has enabled the calculation of current–voltage relation-

ships for a simple model ion channel [77].

Applications of path sampling approaches to protein

folding — the most extreme protein conformational tran-

sition — have been focused on mini-proteins that fold on

the ms timescale. For example, the single-replica multi-

state TIS method has enabled efficient simulation of both

folding and unfolding processes for Trp-cage [58] while

the FFS method has been used to simulate a loop

unfolding transition in Trp-cage [59] that was revealed

by a previous TIS study to be rate-limiting for the

unfolding process [60]. In addition, the single-replica

multistate TIS method has been applied to the ms-folding

process of the villin headpiece as well as its much slower

sub-ms unfolding process (mean first passage time of

0.8 ms), demonstrating that path sampling approaches

can be effective in estimating rate constants for protein

unfolding processes as well as folding processes [61]. Of

future interest are the application of these approaches to

the (un)folding processes of entire proteins (e.g., NTL9

and ubiquitin) at experimental temperatures; due to their

long-timescales (ms or beyond), such folding processes

have typically been characterized at the (considerably

higher) melting temperatures by straightforward simula-

tions [62,63].

Protein (un)binding processes

The characterization of protein (un)binding mechanisms

is not only fundamental to biology, but of great interest to

the field of drug design. The simulation of protein bind-

ing processes with rigorous kinetics is particularly chal-

lenging due to the presence of metastable intermediates

(e.g., the encounter complex).
www.sciencedirect.com
Path sampling has yielded initial successes with models at

different levels of resolution. For example, the WE

approach has enabled the first atomistic simulations (to

our knowledge) of protein–peptide binding pathways

with rigorous rate constants; these simulations involved

the MDM2 protein and an intrinsically disordered p53

peptide, which adopts an a-helical conformation upon

binding MDM2 [78�]. In addition, two studies have

demonstrated the power of path sampling strategies in

generating atomistic pathways for protein–ligand unbind-

ing processes and the corresponding koff values, which are

of great interest for drug design efforts. These studies

involve, firstly, the application of the WE approach to the

FK506 binding protein and several low-affinity, small-

molecule inhibitors, which unbind on timescales up to

tens of ns, resulting in the first analysis of ligand-exit

distributions [64�], and second, the application of the

AMS approach to trypsin and the benzamidine inhibitor,

which unbinds on the ms timescale [65]. In addition, it

has been demonstrated that experimental kon values can

be efficiently reproduced for various protein–ligand sys-

tems using milestoning as part of an atomistic MD/Brow-

nian Dynamics approach [66].

Even coarse-grained models may not be amenable to

complete sampling via straight-ahead simulation. For

example, the WE strategy has been of great benefit to

even Brownian Dynamics simulations involving coarse-

grained, albeit flexible protein models that have been

parameterized to reproduce the molecular shapes, elec-

trostatic potentials, and diffusion properties of all-atom

models. The resulting WE simulations enabled not only

the efficient reproduction of experimental kon values for

wild-type and mutant complexes of barnase and barstar,
Current Opinion in Structural Biology 2017, 43:88–94
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but a statistically robust estimate of the much slower

‘basal’ kon involving the hydrophobic isosteres of the two

proteins — a quantity of fundamental interest to the field

of molecular recognition [9�] (Figure 3b).

Challenges
As path sampling approaches are used to target more

complex systems and slower processes, which seems

inevitable, a number of challenges remain. The most

basic difficulty hinges on intrinsic timescales of the sys-

tems themselves: for example, if the transition event

duration (see Introduction section) for a certain process

exceeds 1 ms, then sampling an ensemble of uncorrelated

transition events would be almost impossible given a total

budget of 10 ms. Of course, the intrinsic timescales would

not be known ahead of time, suggesting caution is neces-

sary for complex systems.

Coordinates and correlations present the primary meth-

odological challenge. The problem of generating corre-

lated transition trajectories was discussed above in ‘Path

Sampling Methods and Recent Advances’, but it is closely

connected to the difficulty of constructing suitable coor-

dinates (or bins or interfaces) for methods requiring them.

Consider a system which is not readily described by a one-

dimensional reaction coordinate (i.e., which has slow

orthogonal coordinates). If one-dimensional bins or inter-

faces are used, it can be expected that fully sampling the

orthogonal space will be slow and may render the results

unreliable — the sampled trajectory segments may be

overly correlated. Fortunately, investigators are already

beginning to make progress in adaptively developing bins

and interfaces [27,67,68].

It will be important to develop software resources further.

As noted in ‘Path sampling methods and recent advances’
section, several highly scalable packages are currently

available, including WESTPA, AWE-WQ and FRESHS,

which have demonstrated inter-operability with a variety

of dynamics engines [50�,52,69]. A competitive software

ecosystem with additional robust packages should be a

boon to the field. Nevertheless, we caution that path

sampling tools are likely to continue to require consider-

able user expertise in yielding reliable results.

On a final note, another frontier that has already been

addressed by initial studies is the application of path

sampling approaches to problems at other scales. Several

approaches have already been applied to signaling net-

works, gene regulation, and spatially resolved cell models

[42,70–76].
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