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Abstract 
  
We present the Rate from Event Durations (RED) scheme, a new scheme that more efficiently calculates rate 
constants using the weighted ensemble path sampling strategy. This scheme enables rate-constant estimation 
from shorter trajectories by incorporating the probability distribution of event durations, or barrier crossing times, 
from a simulation. We have applied the RED scheme to weighted ensemble simulations of a variety of rare-event 
processes that range in complexity: residue-level simulations of protein conformational switching, atomistic 
simulations of Na+/Cl- association in explicit solvent, and atomistic simulations of protein-protein association in 
explicit solvent. Rate constants were estimated with up to 50% greater efficiency than the original weighted 
ensemble scheme. Importantly, our method accounts for systematic error when using data from the entire 
simulation. The RED scheme is relevant to any simulation strategy that involves unbiased trajectories of similar 
length to the most probable event duration, including weighted ensemble, milestoning, and standard simulations 
as well as the construction of Markov state models.  
  
 
I. Introduction 
 
Of great interest to chemical physics and biophysics is the estimation of rate constants for long-timescale 
processes. These rate constants may be directly obtained from molecular simulations with enhanced sampling 
approaches that maintain rigorous kinetics. Among these approaches are path sampling strategies, which focus 
the computing power on the functional transitions between stable states rather than the stable states 
themselves,1 exploiting the fact that for rare events, the event duration tb, or barrier crossing time, is much shorter 
than the associated waiting times between events (tb << k-1 where k is the corresponding rate constant).2,3 Path 
sampling strategies fall broadly into two categories: (i) methods that generate continuous transition paths (e.g. 
weighted ensemble4,5 and other “splitting” strategies,6–8 transition interface sampling,9 and forward flux 
sampling10,11), and (ii) methods that generate discontinuous paths (e.g. milestoning12 and weighted ensemble 
milestoning13). Alternatively, Markov State Models14,15—discrete state kinetic models—can be constructed at the 
post-simulation stage to obtain long-timescale information from either continuous trajectories (e.g., from 
weighted ensemble simulations)16,17 or short, discontinuous trajectories (e.g. from adaptive sampling7).  
 
One challenge of the weighted ensemble (WE) strategy has been the estimation of rate constants from trajectory 
ensembles that have not yet reached a steady state. To tackle this challenge,  history-augmented Markov State 
Models that employ “micro-bins” have been applied to estimate rate constants from pre-steady state 
trajectories.16,17 Alternatively, the non-Poisson kinetics of the transient “ramp-up time”—or approach to steady 
state—of a WE simulation can be incorporated into the rate-constant estimation, improving on previous WE 
studies of complex biological processes such as large-scale protein conformational transitions18 and protein-
ligand binding19–21 that have focused on only the latter portions of the simulations where the rate-constant 
estimate was no longer sensitive to the earliest (and least probable) successful pathways. 
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Figure 1. Illustration of the RED Scheme for rate-constant estimation. A) Estimating the rate constant from the 
ramp-up time is analogous to estimating the average rate at which all runners in a race reach the finish line from 
the first few finish times. B) In the context of a WE simulation, the RED scheme enhances the efficiency of rate-
constant estimation by using the “ramp-up time” for the rate constant, i.e. an initial portion of the distribution of 
event durations. To compare the RED scheme against previous calculation methods, we ask “for a given time t, 
what is the best estimate that our scheme could have produced if we stopped the simulations at time t?” 
 
 
Here we present the Rate from Event Durations (RED) scheme: a more efficient scheme for estimating rate 
constants that exploits the ramp-up time from the early part of a WE simulation by incorporating the distribution 
of event durations (barrier-crossing times) that have been sampled. To illustrate the rationale of the RED scheme, 
we make an analogy of rare-event sampling to a cross-country race in which officials wish to estimate the 
average rate for runners to surmount the first hill, or barrier (Figure 1A). Rather than waiting for all of the runners 
to complete the race, the officials can estimate the average rate more quickly by constructing a probability 
distribution of event durations that is solely based on the initial pack of runners that make it over the barrier. The 
effectiveness of this scheme therefore depends on the extent to which the initial distribution of event durations 
reflects the width and steepness of the barrier after all runners have finished the race.  
 
The RED scheme is relevant to any simulation strategy that relies on unbiased pathways of similar length to the 
typical event duration, including weighted ensemble,4,5 milestoning,12 and standard simulations as well as the 
construction of Markov state models.14,15 To demonstrate the power of the RED scheme for calculating rate 
constants, we applied the strategy to a set of three increasingly complex rare-event processes.  
 
First, we applied the RED scheme to residue-level simulations of a protein conformational switching process of 
an engineered protein-based Ca2+ sensor. These simulations have enabled the rational enhancement of the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 21, 2020. ; https://doi.org/10.1101/453647doi: bioRxiv preprint 

https://doi.org/10.1101/453647


sensor’s response time by as much as 32-fold.18 This sensor was engineered using the alternate frame folding 
(AFF) scheme, fusing together the wild-type calbindin protein and a circular permutant of calbindin such that the 
two proteins partially overlap in sequence in the resulting calbindin-AFF construct and therefore fold in a mutually 
exclusive manner.22 Importantly, WE simulations of this switching process are an ideal “proof-of-principle” 
application of the RED scheme as the simulations each exhibit a large “ramp-up time” before steady-state 
convergence of the rate constant and each simulation captures the entire distribution of event durations.18 
 
Second, we applied the RED scheme to the molecular association of Na+ and Cl- ions in explicit solvent. This 
association process was one of four benchmark applications in a previous study that demonstrated the efficiency 
of WE relative to standard simulations in generating rate constants and pathways.23 
 
Finally, we applied the RED scheme to atomistic simulations of a complex biological process in explicit solvent: 
protein-protein binding. In particular, we re-analyzed a previously completed protein-protein binding simulation 
that has yielded rate constants and pathways for the barnase and barstar proteins20 using <1% of the total 
simulation time used for a Markov State Model study of the same binding process.24  
 
II. Theory 
 
For a rare-event process, the majority of event durations (barrier crossing times) will be short compared to the 
waiting times between events. As the system evolves in time and begins to generate event duration times that 
are substantially longer than the most probable event duration, the distribution of waiting times becomes near-
exponential, which is consistent with a Poisson point process in which the events are stochastic and 
independent.25 However, when the simulations of a rare-event process are only as long as the most probable 
event duration—as is often the case for WE and other rare-events sampling strategies—the number of events 
per unit time displays transient, pre-steady state behavior, and the initial edge of the distribution of waiting times 
deviates from an exponential distribution. Our Rates from Event Durations (RED) scheme leverages this 
transient behavior to estimate rate constants from pre-steady-state trajectories. Below, we briefly summarize the 
weighted ensemble (WE) strategy and then present details of the original WE scheme for rate-constant 
estimation and the RED scheme.  
 
A. The weighted ensemble (WE) strategy 
 
The WE strategy enhances the sampling of rare events by orchestrating the periodic resampling of parallel, 
weighted trajectories.4 The goal of the strategy is to provide reasonably even coverage of configurational space 
– typically divided into bins along a progress coordinate toward the target state – to yield an ensemble of 
continuous, successful pathways with rigorous kinetics. The resampling step is performed at a fixed time interval 
𝜏 and involves evaluating trajectories in the same bin for either replication or combination to maintain the same 
number of target trajectories/bin. Rigorous management of trajectory weights ensures that no bias is introduced 
into the dynamics. To maintain non-equilibrium steady-state conditions, trajectories that reach the target state 
are “recycled”, i.e. terminated followed by initiation of a new trajectory with the same weight.  
 
 
B. Original WE scheme for rate-constant estimation 
 
In the original WE scheme, the macroscopic rate constant 𝑘!" for a rare-event process involving an initial state 
A and target state B is computed as follows:26 
 

𝑘!" =
〈#!"

##〉

〈$!〉
=〈𝑓!"%%〉 (1) 

 
where < 𝑓!"%% > is the running average of the conditional flux of probability carried by trajectories originating in 
state A and arriving in state B and < 𝑝! > is the running average of the fraction of trajectories more recently in 
A than in B, which is equal to one in non-equilibrium steady-state WE simulations. In practice, if a steady state 
has not been reached, then 〈𝑓!"&&〉 is approximated by the running average 〈𝑓!"〉 of the conditional flux (not 
necessarily steady state) from state A to state B. For bimolecular processes, we divide equation (1) by the 
effective molar concentration 𝐶' of the associating molecules to estimate a rate constant in units of M-1s-1.  
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C. Rate from Event Durations (RED) scheme.  

 
The Rate from Event Durations (RED) scheme reduces the impact of transient effects from a WE simulation on 
rate-constant estimation by incorporating the distribution	of sampled event durations (barrier crossing times 𝑡( 
which exclude the dwell time in state A). The motivation behind this scheme is that short WE simulations may 
not capture pathways with relatively long barrier-crossing times that have yet to enter state B; therefore, the 
original WE scheme tends to underestimate the true rate constant by a predictable quantity that depends on the 
probability of observing pathways with longer event durations. The RED scheme incorporates this quantity as a 
correction factor to the rate-constant estimate of the original scheme at a given time of the simulation.  
 
We consider a rare-event process with the following properties: 

1. The system is in an initial state A at time 𝑡 = 0 such that an event of duration 𝑡( is less than or equal to 
the longest possible trajectory length 𝑡)*+ of the WE simulation.  

2. While in the initial state A, the system has a constant probability per unit time of initiating successful 
transition path to the target state B, denoted 𝑘!". 

3. The event durations are assumed to be randomly distributed according to a probability density function 
ℎ!", where ∫ ℎ!"(𝑡)𝑑𝑡 = 1,

' . 
4. Upon arriving in a target state B, the system is immediately “recycled” to the initial state A. 

 
To derive an expression for estimating the rate constant, we begin by defining the flux 𝑓!" from an initial state A 
into a target state B as a convolution of the rate constant 𝑘!" for completing the A→B transition in a time 𝑡( 
distributed according to ℎ!" (see Supporting Information for additional details): 
 

 𝑓!"(𝑡) = ∫ 𝑘!"	ℎ!"(𝑡()𝑑𝑡(
-
0  (2) 

 
We then integrate and rearrange equation (2) to obtain an expression for 𝑘!" that depends only on the true 
cumulative number of events 𝐹!"(𝑡)*+)	and cumulative distribution of event durations 𝐻!"(𝑡): 
 

𝑘!" = 𝐹!"(𝑡)*+)/ ∫ 𝐻!"(𝑡)𝑑𝑡
-$%&
0 	 (3)	

 
where the numerator 𝐹!"(𝑡)*+) = ∫ 𝑓!"(𝑡)𝑑𝑡

-$%&
0  and the denominator is the integral of 𝐻!"(𝑡)	over all values of 

𝑡 ranging from 0 to 𝑡)*+ where 𝐻!"(𝑡) 	= 	∫ ℎ!"(𝑡()𝑑𝑡(
-
0 , 𝑡)*+, and ℎ!"(𝑡() is the true distribution of event 

durations. Compared with the original WE scheme, where the denominator would be the time 𝑡)*+, the 
denominator in equation (3) represents a “corrected time”, which accounts for the time during which it was 
possible to see events. Equivalently, the denominator in equation (1) of the original WE scheme could be written 
as ∫ 1	𝑑𝑡-$%&

' , which indicates that an estimate derived from equation (3) would be greater than that of the original 
WE scheme, since 𝐻!"(𝑡)	is a cumulative density function that is less than one.  
 
Next, we use equation (3) to derive an estimate for the rate constant based on the “observed” distribution of 
event durations that are sampled by the WE simulation. While we may naively estimate ℎ!"(𝑡() as the observed 
histogram ℎ8!"(𝑡()	of event durations, the observed histogram ℎ8!"(𝑡()	 is likely skewed toward shorter event 
durations due to the transient phase for the time evolution of the rate constant ( !  indicates the observed 
quantity). To obtain a corrected estimate ℎ9!"(𝑡() of the histogram, we divide the observed histogram ℎ8!"(𝑡() by 
the interval of time (𝑡)*+ − 𝑡()	in which it is possible to observe an event of duration 𝑡( from a simulation with a 
maximum trajectory length 𝑡)*+:  
 

ℎ9!"(𝑡() ∝ 	ℎ8!"(𝑡()/(𝑡)*+ − 𝑡()	 (5)	
 
where the constant of proportionality is chosen such that the corrected ℎ9!" is normalized (∫ ℎ9!"(𝑡()𝑑𝑡( = 1,

' ).  
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Finally, we define the RED scheme estimate 𝑘!"./0 of the true rate constant 𝑘!" as follows: 
 

𝑘!"./0 =
12!"(-$%&)

5
 (6) 

 
where 𝐹8!"(𝑡)*+) is the observed cumulative probability of 𝐴 → 𝐵 transitions up to the maximum trajectory length 
𝑡)*+; and the denominator is a correction factor 𝐶 equal to ∫ ∫ ℎ9!"(𝑡()𝑑𝑡(𝑑𝑡

-
'

-$%&
'  in units of time, yielding a rate-

constant estimate 𝑘!"./0 in units of inverse time. For bimolecular processes, we divide equation (6) by the effective 
molar concentration 𝐶' of the associating molecules to estimate a rate constant in units of M-1s-1 (as is also the 
case for the original WE scheme).  
	
D. Error estimation for rate constants.  
 
In cases where it is not possible to sample the entire distribution of event durations, the RED scheme provides 
a framework for understanding the error that results from not observing trajectories with longer event durations. 
Given a maximum trajectory length 𝑡)*+, the corrected estimate ℎ9!"(𝑡() of the event duration distribution ℎ!"(𝑡() 
will be zero for 𝑡( > 𝑡)*+ and, since ℎ9!" is normalized such that ∫ ℎ9!"(𝑡()𝑑𝑡( = 1,

' , ℎ9!"(𝑡() will be artificially 
inflated for 𝑡( < 𝑡)*+: 
 

  ℎ9!"(𝑡() ≈ ℎ!"(𝑡()/∫ ℎ!"(𝑡)𝑑𝑡	
-$%&
0 for 𝑡( ∈ [0, 𝑡)*+] (7) 

 
If we plug the right-hand side of equation (7) back into equation (6), we find that 𝑘!"./0	underestimates 𝑘!" by a 
factor of ∫ ℎ!"(𝑡()𝑑𝑡(

-$%&
0 , the observed fraction of the distribution of event durations: 

 
𝑘!"./0 ≈ (∫ ℎ!"(𝑡()𝑑𝑡()𝐹!"(𝑡)*+)/

-$%&
0 ∫ ∫ ℎ!"(𝑡()𝑑𝑡(𝑑𝑡

-
0

-$%&
0  (8) 

 
For example, if 20% of pathways reaching the target state have longer event durations 𝑡( than the maximum 
trajectory length 𝑡)*+ and are therefore not captured during the simulation, then we tend to underestimate the 
true rate constant 𝑘!" by 20%. Despite this underestimation, the RED scheme estimate is still an improvement 
over the original scheme for estimating rate constants (equation (1)). 
  
For multiple, independent WE simulations 1, 2, . . . , 𝑁, we estimated uncertainties in the rate constants by first 
applying the RED scheme individually to map each simulation 𝑖 to a corresponding rate constant estimate 𝑘./0,7, 
and then applying Bayesian bootstrapping27 to estimate 95% credibility regions (CR). To prevent underestimating 
the uncertainty, the distributions of event durations ℎ9!"7 were calculated independently for each simulation, as 
pooling data to make a smoother estimate of ℎ!"would introduce correlations and therefore break the 
independence between the 𝑘./0,7. For cases where only a single WE simulation was run (i.e. for barnase-barstar 
association), the uncertainty in the rate constant calculated by the RED scheme is not reported as the error 
estimation is not straightforward in these cases (see Supporting Information).  
 
 
III. Methods 
 
A. WE simulations.  

 
All WE simulations were run using the open-source, highly scalable WESTPA software package 
(https://westpa.github.io/westpa).28 WE parameters and details of dynamics propagation are provided below for 
each rare-event process. 
 
Protein conformational switching. As described in DeGrave et al.,18 10 independent WE simulations were 
previously run to generate N’ ⟶N switching pathways of the wild-type E65’Q calbindin-AFF construct under non-
equilibrium steady-state conditions. Each WE simulation was run for 2000 WE iterations with a fixed time interval 
𝜏 of 100 ps and a target number of 5 trajectories/bin, yielding an aggregate simulation time of 65 µs for each 
simulation. A two-dimensional progress coordinate was defined as (i) the pseudo-atom RMSD of the N frame 
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after aligning on the folded N frame structure, and (ii) the pseudo-atom RMSD of the N’ frame after aligning on 
the folded N’ frame. Dynamics were propagated using a Brownian dynamics algorithm with hydrodynamic 
interactions, as implemented in the UIOWA-BD software.29,30 All analysis was performed with conformations 
sampled every 50 ps. A minimal residue-level protein model was employed in which each residue is represented 
by a single pseudo-atom at the position of its C𝛼 atom. The conformational dynamics of the protein were governed 
by a Gō-type potential energy function31,32 that was parameterized to reproduce the experimental folding free 
energies of the isolated wild-type protein and circular permutant of the protein.18 
 
Na+/Cl- association. Five independent WE simulations were run to generate pathways of the Na+/Cl- association 
process under non-equilibrium steady-state conditions. Each WE simulation was run for 1000 WE iterations with 
a fixed time interval 𝜏 of 2 ps for each iteration and a target number of 4 trajectories/bin, yielding an aggregate 
simulation time of 0.2 µs for each simulation. A one-dimensional progress coordinate was defined as the distance 
between the Na+ and Cl- ions; bins were placed every 1 Å from a separation distance of 12 Å (unassociated 
state) to 2.6 Å (associated state). Dynamics were propagated using the AMBER18 software package33 with the 
TIP3P water model34 and corresponding Joung and Cheatham parameters for the Na+ and Cl- ions.35 Simulations 
were started from an unassociated state with a 12-Å separation between the Na+ and Cl- ions and a sufficiently 
large truncated octahedral box of explicit water molecules to provide a minimum 12 Å clearance between the 
ions and box walls, yielding an effective ion concentration 𝐶' of 2.8 mM. Temperature and pressure were 
maintained at 298 K and 1 atm using the Langevin thermostat (collision frequency of 1 ps-1) and Monte Carlo 
barostat (with 100 fs between attempts to adjust the system volume), respectively. Non-bonded interactions were 
truncated at 10 Å and long-range electrostatics were treated using the particle mesh Ewald method.36  
 
Protein-protein association. As described in Saglam and Chong,20 a single WE simulation was previously run to 
generate pathways of the association process of the barnase and barstar proteins under equilibrium conditions.20 
The WE simulation was run for 650 WE iterations with a fixed time interval 𝜏 of 20 ps for each iteration and a 
fixed total number of 1600 trajectories at all times during the simulation, yielding an aggregate simulation time of 
18 µs. A two-dimensional progress coordinate was defined as (i) the minimum separation distance between 
barnase and barstar, and (ii) a “binding” RMSD, which was determined by first aligning on barnase in the crystal 
structure of the barnase–barstar complex37 and then calculating the heavy-atom RMSD of barstar residues D35 
and D39. Dynamics were propagated using the Gromacs 4.6.7 software package38 with the Amber ff03* force 
field39, TIP3P water model40, and corresponding Joung and Cheatham ion parameters.35 The system was 
immersed in a sufficiently large dodecahedron box of explicit water molecules to provide a minimum 12 Å 
clearance between the solutes and box walls for the unbound states in which the binding partners were separated 
by 20 Å. A total of 31 Na+ and 29 Cl− ions were included to neutralize the net charge of the protein system and 
to yield the experimental ionic strength (50 mM).41 The entire simulation system consisted of ∼100,000 atoms 
with an effective protein concentration 𝐶' of 1.7 mM. Heavy-atom coordinates for initial models of the unbound 
proteins were extracted from the crystal structure of the barnase-barstar complex (PDB code: 1BRS).37  
 
B. Standard simulations.  

 
To validate the rate constants computed from the WE simulations for the protein conformational switching 
process and Na+/Cl- association process, an extensive set of standard simulations was run to provide “gold 
standard” rate constants for comparison. Given the computationally prohibitive timescales for the barnase-
barstar association process, no standard simulations were run for this process; instead, the experimental 
association rate constant is used to validate the computed association rate constant from the WE simulation. For 
the protein conformational switching process, 50 2-µs standard simulations were run. For the Na+/Cl- association 
process, 10 1-µs standard simulations were run. Dynamics were propagated as described above for the 
corresponding WE simulations.  
 
 
IV. Results and Discussion 
 
We have developed the Rate from Event Durations (RED) scheme: a new scheme for rate-constant estimation 
that reduces the impact of transient effects by using the distribution of event durations that correspond to 
simulated pathways of the rare event. To demonstrate the effectiveness of the RED scheme, we have applied 
the scheme to simulations of three rare-event processes: (i) residue-level simulations of protein conformational 
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switching by an engineered protein-based calcium sensor; (ii) atomistic simulations of Na+/Cl- association in 
explicit solvent; and (iii) atomistic simulations of protein-protein association in explicit solvent. The effectiveness 
of the RED scheme was evaluated by monitoring the time-evolution of the rate constant, incorporating the 
distribution of event durations up to each time point (Figure 1B). 
 
A. Application to residue-level simulations of protein switching  
 
The switching process of the engineered calbindin-AFF system (Figure 2A), as simulated using a residue-level 
model, is an example of a case where the RED scheme would be expected to be particularly effective in enabling 
the calculation of rate constants from shorter trajectories. This expectation is based on the relatively long “ramp 
up time” of the flux into steady state from a given WE simulation.   
 
To determine the effectiveness of the RED scheme, we examined the evolution of the rate constant 𝑘!"./0as a 
function of the molecular time, where at any given time the estimate ℎ9!" is based only on data from all 10 
independent WE simulations that were generated up to and including that time. The RED scheme yields faster 
convergence of the rate constant 𝑘8’→8./0  for the N’→N switching process (Figure 2B), requiring only the first 25% 
of the WE simulation data to reproduce the rate constant from standard simulations (50 2-µs simulations). This 
is almost 50% more efficient than the original scheme, which only began to converge after 75% of the simulation 
data had been collected and underestimated the rate constant by a factor of two (compared with that from 
standard simulations) due to the slow transient phase.  
 
We determined the extent of simulation required for estimating rate constants by monitoring the position of the 
maximum in the distribution of event durations. If the position did not shift substantially--meaning that the most 
probable event duration reached a consistent value--we considered the simulation as being converged for the 
purpose of estimating rate constants using the RED scheme. Figures 2B and 2C show that the most probable 
event duration (as defined from 100% of the data collected) is captured within the initial 25% of a given WE 
simulation; furthermore, the cumulative probability distribution of event durations is well-resolved and not skewed 
towards short values, with low probability events occurring consistently throughout the course of the simulation.  
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Figure 2. Residue-level simulations of protein conformational switching. A) A schematic of the calbindin-AFF 
switch, showing the initial N’ state and target N state of the simulated switching process. B) Comparison of the 
N’→N switching rate constant (average of 10 WE simulations) using the original WE scheme (𝑘8’→8) and RED 
scheme (𝑘8’→8./0 ), as a function of molecular time, or N𝜏 where N is the number of WE iterations and 𝜏 is the fixed 
time interval (100 ps in this case) of each WE iteration. See also Table S1. Ten WE simulations were run for 
each scheme. The RED scheme was applied using the first 25%, 50%, and 75% from each WE simulation. Also 
shown is the rate constant calculated from 50 2-µs standard simulations (horizontal dashed line). The shaded 
regions show the nominal 95% credibility regions (CR) as a function of molecular time from Bayesian 
bootstrapping;27 the CR from standard simulations is displayed, but too small to be visible. C) Estimates of the 
probability density function hAB of event durations for the switching process, as sampled by the first 25%, 50%, 
and 75% of a representative WE simulation. The vertical gray line indicates the most probable event duration 
based on the distribution from 100% of the simulation (delineated in black).  
 
 
B. Application to atomic-level simulations of Na+/Cl- association 
 
Na+/Cl- association in explicit solvent (Figure 3A) occurs on the ns timescale, which is orders of magnitude faster 
than the calbindin-AFF switching process and the complex processes that follow. Given the fast event durations 
of the ion-pair association, it is not expected that the RED scheme would provide much benefit over standard 
WE rate constant estimation. We found that this was indeed the case, as the system does not exhibit a “ramp-
up time” (Figure 3B) and the most probable event duration is sufficiently sampled with less than 25% of the data 
collected (Figure 3C). 

 

 
 

Figure 3. Atomistic simulations of Na+/Cl- association in explicit solvent. A) The Na+/Cl- system in explicit solvent. 
B) Comparison of the Na+/Cl- association rate constant 𝑘;<./0(average of five WE simulations) using the original 
WE and RED schemes, plotted as a function of molecular time, or N𝜏 where N is the number of WE iterations 
and 𝜏 is the fixed time interval (2 ps) of each iteration. See also Table S1. Five WE simulations were analyzed 
with each scheme. The RED scheme was applied using the first 25%, 50%, and 75% from each WE simulation. 
Also shown is the rate constant calculated from 10 1-µs standard simulations (horizontal dashed line). The 
shaded regions show the nominal 95% credibility regions (CR) as a function of molecular time from Bayesian 
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bootstrapping.27 The y-axis shown is only a portion of the full set of values in order to more clearly show the 
comparison between the two schemes; see Figure S1 for a plot using the full range of data. C) Estimates of the 
probability density function hAB of event durations for the molecular association process, as sampled by the first 
25%, 50%, and 75% of the 5 WE simulations. The vertical gray line indicates the most probable event duration 
based on the distribution from 100% of the simulation (delineated in black).  
 
 
C. Application to atomistic simulations of long-timescale processes in explicit solvent  
 
To test the effectiveness of the RED scheme in estimating rate constants from more detailed simulations of 
complex biological processes, we applied the scheme to a single WE simulation of a protein-protein binding 
process. This simulation involved the diffusion-controlled association of the barnase and barstar proteins using 
atomistic protein models with explicit solvent (Figure 4A). While this simulation was not performed with recycling 
enabled and therefore violates one of the RED scheme’s assumptions, based on the extremely short length of 
the simulation compared to the mean first passage time, the weight of the trajectories that would have been 
recycled is extremely low, such that negligible inaccuracy is introduced. When applied to this simulation, the 
RED scheme is at least 25% more effective than the original scheme in estimating rate constants given that the 
WE simulation has just finished ramping up to a steady state. Similar to the simulation of protein conformational 
switching, this simulation exhibits a long “ramp-up-time” (Figure 4B). In contrast, the most probable event 
duration is relatively long (6 ns) and just shy of being captured within the first 50% of the simulation, 
underestimating the rate constant compared to the eventual converged value (Figure 4C). Based on the first 
75% of the simulation, the rate-constant is still underestimated, but due to another reason: the most probable 
event duration is actually longer than that based on the entire simulation. Due to the large size of the simulation 
system (~100,000 atoms) and the relatively long timescales of the protein-protein binding process, only one WE 
simulation was carried out; therefore, no error analysis was performed for the estimated rate constants.  
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Figure 4. Atomistic simulations of protein-protein association in explicit solvent. A) A representative unbound 
state of the barnase and barstar proteins in explicit solvent. B) Comparison of the barnase-barstar association 
rate constant 𝑘;<./0using the original WE and RED schemes, plotted as a function of molecular time, or N𝜏 where 
N is the number of WE iterations and 𝜏 is the fixed time interval (20 ps) of each WE iteration. See also Table S1. 
A single WE simulation was analyzed with each scheme. To test the length of simulation required for a converged 
rate-constant estimation, the RED scheme was applied using the first 25%, 50%, and 75% from each WE 
simulation. Also shown is the rate constant from experiment (horizontal dashed line); the uncertainty (shaded 
gray) is the 95% confidence interval determined from standard errors of the mean reported for the experimental 
results;41 the uncertainty of the rate constant from the original WE scheme is the 95% confidence interval by 
Monte Carlo bootstrapping.42 C) Estimates of the probability density function hAB of event durations for the 
protein-protein association process, as sampled by the first 25%, 50%, and 75% of one of the 10 WE simulations 
depicted in panel A. The vertical gray line indicates the most probable event duration based on the distribution 
from 100% of the simulation (delineated in black).  
 
 
D. When is the RED scheme effective and how do we monitor convergence?  
 
Regardless of the simulation model resolution, the RED scheme is particularly efficient in rate-constant 
estimation for rare events that involve long “ramp ups” in the time evolution of the estimated rate constant. For 
atomically detailed simulations, the RED scheme works well for long-timescale processes on the µs timescale 
or beyond. In this study, the RED scheme is of great benefit to residue-level simulations of the protein 
conformational switching process involving the calbindin-AFF switch due to the large ramp-up time in the flux 
into the target state, and to atomistic simulations of protein-protein binding on the µs timescale. On the other 
hand, the RED scheme has little impact on the efficiency of rate-constant estimation for the simulations of Na+/Cl- 
association since this process is relatively rapid and does not exhibit a large ramp-up time in the flux into the 
target, associated state. As recommended for the original WE scheme,23 the RED scheme is more likely to yield 
converged rate constants for a process if the most probable event duration has been sampled. Provided that this 
is the case, the RED scheme estimates rate constants more efficiently than the original WE scheme.  
 
An effective convergence criterion for determining the amount of simulation data necessary for the RED scheme 
is to generate a sufficient number of successful events such that the position of the maximum in the distribution 
of event durations (i.e. the most probable value) does not change substantially. For both the calbindin-AFF 
switching process and Na+/Cl- association process, trajectories with the most probable event duration are already 
sampled within the first 25% of the WE simulation. On the other hand, for the barnase-barstar association 
process, the most probable event duration begins to stabilize only after 75% of the simulation is completed. If 
the most probable event duration continues to evolve after completing the simulation, the system is likely far 
from a steady state and will require generating a much larger number of successful pathways to yield a 
converged rate-constant estimate. Alternatively, if the event duration distribution involves a long tail, it may be 
necessary to sample more of the distribution than just the most probable value.  
 
For challenging cases in which a large amount of computing has already been invested, we recommend applying 
the RED scheme to quickly gauge the extent to which the simulation has reached steady state. If the estimated 
rate constant is orders of magnitude from that of the expected timescales, then we recommend constructing a 
history-augmented Markov State Model43 to adjust trajectory weights to values more representative of steady 
state conditions and carrying out a separate WE simulation with the adjusted weights.  
 
V. Conclusions 
 
We have developed the Rate from Event Durations (RED) scheme: a new scheme for calculating rate constants 
within the framework of the weighted ensemble (WE) strategy that reduces the impact of transient effects on 
rate-constant estimation. While the RED scheme does not eliminate the need to observe the substantial portion 
of the distribution of barrier-crossing times, we anticipate that this scheme—by correctly incorporating the 
transient phase into the rate-constant estimation rather than “throwing it away”—will enable more accurate 
estimation of rate constants earlier on in a simulation, using a fraction of the total simulation time required by the 
original WE scheme. Furthermore, as demonstrated by our results for protein-protein association, the RED 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 21, 2020. ; https://doi.org/10.1101/453647doi: bioRxiv preprint 

https://doi.org/10.1101/453647


scheme could be especially important for estimating the rate constants of challenging biological processes that 
feature long transient phases. Importantly, the scheme accounts for systematic error when using data from the 
entire simulation—even before the molecular time exceeds the maximum event duration.  
 
 
 
Dedication 
 
This paper is dedicated to Maud Menten, a Canadian woman who—together with Leonor Michaelis—developed 
the ground-breaking Michaelis-Menten equation for enzyme kinetics. To work with Michaelis, she crossed the 
Atlantic by ship in 1912--not long after the Titanic sank. Unable to find a faculty position in her native Canada, 
she joined the faculty in the medical school at the University of Pittsburgh in 1918. 
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(https://github.com/westpa/user_submitted_scripts/tree/main/RED_scheme).  
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