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ABSTRACT: A major challenge for many rare-event sampling
strategies is the identification of progress coordinates that capture
the slowest relevant motions. Machine-learning methods that can
identify progress coordinates in an unsupervised manner have
therefore been of great interest to the simulation community. Here,
we developed a general method for identifying progress
coordinates “on-the-fly” during weighted ensemble (WE) rare-
event sampling via deep learning (DL) of outliers among sampled
conformations. Our method identifies outliers in a latent space
model of the system’s sampled conformations that is periodically
trained using a convolutional variational autoencoder. As a proof of principle, we applied our DL-enhanced WE method to simulate
the NTL9 protein folding process. To enable rapid tests, our simulations propagated discrete-state synthetic molecular dynamics
trajectories using a generative, fine-grained Markov state model. Results revealed that our on-the-fly DL of outliers enhanced the
efficiency of WE by >3-fold in estimating the folding rate constant. Our efforts are a significant step forward in the unsupervised

learning of slow coordinates during rare event sampling.

1. INTRODUCTION

Rare-event sampling methods have been increasingly used to
simulate long-time-scale biological processes at the atomic
level.' ™ For many of these methods, a major challenge that
remains is the identification of a progress coordinate (also
known as a reaction coordinate or collective variables) that
captures the relevant slow motions. Given that the intrinsic
dimensionality of a molecular dynamics (MD) simulation with
N atoms is 3N-6 (in Cartesian coordinates), even relatively
small systems can be challenging to analyze by using
approaches that focus on motions along only a few dimensions.
Strategies for identifying progress coordinates include the use
of fast, approximate trajectories,” identification of coordinates
that correlate with the committor (or commitment proba-
bility),”® and automated artificial intelligence (AI) techniques
such as machine and deep learning (DL).”~"*

Al techniques can identify progress coordinates by detecting
distinct conformational states in an unsupervised manner
based solely on the atomic coordinates of structures sampled
by an MD simulation. This detection is commonly facilitated
by projecting the high-dimensional data from MD simulations
onto low-dimensional manifolds containing a compressed
representation of data. As demonstrated by a recent study, DL
techniques involving the application of a convolutional
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variational autoencoder (CVAE) can identify effective progress
coordinates for simulating the folding of small proteins via
analysis of extensive MD simulations and the use of such
progress coordinates with adaptive sampling has accelerated
the sampling of folding events by >100X relative to
conventional MD (cMD) simulations.””"?

Here, we have developed a DL method to learn progress
coordinates “on-the-fly” during weighted ensemble (WE)™#1e
rare-event sampling.'’~'* WE is a path sampling strategy that
has enabled atomistic simulations of complex processes such as
protein folding,” protein—ligand (un)binding,”" and large-
scale conformational transitions in proteins.”> The DL method
involves the application of a CVAE to compress high-
dimensional WE simulation data down to lower-dimensional
representations in latent space and then replicating outlier
trajectories during a resampling procedure (Figure 1). CVAE
models are particularly effective in anomaly detection through
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Figure 1. Workflow for DL-enhanced WE simulations. On-the-fly DL
of progress coordinates during a WE simulation involves the
application of a CVAE to compress the high-dimensional simulation
data down to a three-dimensional latent space model. The high-
dimensional data are in the form of pairwise residue contact matrices
for selected conformations from the WE simulation. A WE resampling
procedure is periodically applied by replicating outlier trajectories to
enrich for sampling of rare, barrier-crossing transitions (e.g., protein
folding). WE simulations are run using the WESTPA software,'®"?
and the CVAE model® is created using the DeepDriveMD
software,"*~'°

As a proof of principle, we applied our DL-enhanced WE
strategy to simulate the folding process of the N-terminal
domain of the L9 (NTL9) protein. Our simulations employed
discrete-state synthetic molecular dynamics (synMD) trajecto-
ries,”* which are ideal for methods testing due to their greatly
reduced computational cost, atomistic structures, and
analytical “ground-truth” solution for steady-state observables
(ie, rate constants). We determine the features of the
simulation data that are needed to build an effective latent
space model of the system and train the latent space model
“on-the-fly” to learn an effective progress coordinate for the
molecular process of interest.

2. METHODS

2.1. Overview of WE Path Sampling. WE path sampling
enhances the efficiency of generating pathways and rates for
rare events (e.g, protein folding and binding) by running a
large number M of weighted trajectories in parallel and
iteratively applying a resampling procedure at fixed time
intervals 7.'”*> At each WE iteration, the resampling procedure
involves replicating trajectories that have occupied less-visited
regions of configurational space and occasionally terminating
trajectories that have occupied more frequently visited regions.
Such regions are typically defined as bins or clusters along a
progress coordinate. For binned WE simulations, the goal is to
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provide equal sampling of each bin such that only trajectories
within each bin are eligible to be merged together. For the
binless WE simulation, as used for our DL-enhanced WE
simulations, any trajectories may be merged together in order
to maintain a fixed total number of trajectories for each WE
iteration. Trajectory weights are tracked rigorously such that
the weights sum to a total probability of one, thereby ensuring
that no bias is introduced into the dynamics. To maintain a
nonequilibrium steady state, trajectories that reach the target
state (e.g, folded state for protein folding) are “recycled”,
initiating a new trajectory from the initial state (e.g., unfolded
state) with the same statistical weight.

2.2, DL-Enhanced WE Simulations of Protein Folding.
To further enhance the efficiency of WE simulations in
sampling rare events, we have developed a method that
employs DL to learn progress coordinates on-the-fly during a
WE simulation. All WE simulations were run using the
WESTPA 2.0 software (https://github.com/westpa/westpa),18
in conjunction with synMD trajectories24 DL analysis was
carried out using the mdlearn Python library associated with
the DeepDriveMD software (https://github.com/
ramanathanlab/ m(llezirn).l4_16’26 The mdlearn library includes
linear, nonlinear, and hybrid machine learning tools for
learning latent space representations (embedding models) of
MD simulation data to characterize biologically relevant
conformational transitions.”’ ' While the DeepDriveMD
software orchestrates adaptive sampling using various MD
engines, the mdlearn library provides support for ML/AI
methods within the DeepDriveMD software. >

In our workflow for DL-enhanced WE simulations (Figure
1), the DeepDriveMD software compressed high-dimensional
pairwise residue contact maps down to three-dimensional,
latent space representations using a CVAE.” In the contact
maps, a pair of residues was considered to be in contact if the
minimum distance between their C, atoms was within 8 A.
While one might consider using continuous residue—residue
distance matrices as input, we opted for binary contact maps,
which are robust to minor structural variations, making them
effective for studying conformational states and training
models like variational autoencoders (VAEs).**??

The DL-enhanced WE resampling procedure aims to
replicate trajectories from selected “outlier” conformations.
These conformations were identified using (i) the local outlier
factor (LOF) anomaly detection method* applied to CVAE
latent space representations of trajectory data and (ii) a single
structural feature of the protein system in real space, the C,
RMSD from the folded structure. The LOF method,**
implemented in scikit-learn,”> is an unsupervised learning
algorithm that quantifies the extent to which a data point
(conformation) deviates from its neighboring points based on
variations in local density (LOF score; see Supporting
Information).

The DL-enhanced WE resampling procedure was applied in
two stages (Figure 2). In the first stage, we identified outliers
among the M total trajectories at the current WE iteration by
(i) sorting the trajectories by the LOF score, (ii) designating
the top 12 trajectories as “outliers” (high LOF scores) and the
bottom 12 as “inliers”, and (iii) ranking each list of trajectories
by the C, RMSD from the folded structure. To avoid
generating trajectories with extremely low weights, trajectories
with statistical weights beyond a minimum threshold of 1 X
107* were removed from the list of outliers. Likewise, to avoid
a single trajectory with a majority of the total probability, a
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Figure 2. Illustration of the DL-enhanced WE resampling procedure.
The WE resampling procedure was applied in two stages. In the first
stage, trajectories were sorted by their LOF score, designating the top
12 trajectories as “outliers” and bottom 12 trajectories as “inliers”. In
the second stage, a fixed number of M = 72 total trajectories was
maintained through a random combination of replicating up to six
lowest-RMSD trajectories and merging up to 12 highest-RMSD
trajectories. The maximum numbers of replication and termination
moves were each set to six (see Methods). Trajectory weights were
rigorously tracked throughout the simulation.

trajectory with a statistical weight beyond a maximum
threshold of 0.1 was removed from the list of inliers. In the
second stage, we applied the WE resampling procedure,
replicating and terminating trajectories to maintain a fixed total
number of M = 72 trajectories. Candidates for replication were
the six outliers with the lowest C, RMSD values and
candidates for termination were the 12 inliers with the largest
C, RMSD values. For the outliers, there could be multiple
ways to achieve six splits (e.g., split one trajectory into six, split
two trajectories into three each, etc.). In the same way, there
are also multiple ways to achieve six terminations (e.g.,, merge
six trajectories into six other trajectories pairwise, merge six
trajectories into one trajectory etc.). All possible ways to
achieve six splits or terminations were considered, and the
chosen method was randomly selected. For merges, in
accordance with the rules of the WE protocol, the surviving
trajectory in each termination group was randomly chosen
based on trajectory weights. In this study, the maximum
numbers of replication and termination instances were each set
to six, but all parameters described above, including those for
calculating the LOF score, can be customized by the users.
Future studies will be conducted to further optimize the choice
of parameters.

2.3. Propagation of synMD Trajectories. To enable
rapid testing of each WE protocol with an atomistic system, we
used the synMD approach®® to propagate discrete-state
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trajectories in a WE simulation. This approach involves
propagating discrete-state Markov chain trajectories with a
fixed time step among the “microbins” of a generative, fine-
grained Markov state model (MSM) based on bin-to-bin
transition probabilities. Here, our MSM was based on a set of
cMD simulations of the NTL9 protein folding process (2.5 us
of total simulation time) with a lag time of 10 ps. These
simulations employed the Amber ff14SB force field®” with
generalized Born implicit solvent (Hawkins, Cramer, Truhlar
model;’** igb = 1)* and were performed in the NVT
ensemble at 300 K using a weak Langevin thermostat (collision
frequency of S ps™').

The MSM was previously constructed by Russo and
Zuckerman*' by first generating pairwise heavy-atom distance
matrices of the simulation data, excluding nearest neighbors,
and then applying the variational approach for Markov
processes (VAMP)* to reduce the dimensions of these
matrices into 356 components covering 85% of the variance.
Microbins of the MSM were generated by applying a stratified
k-means clustering36 of the simulation data in which
trajectories were clustered within “strata” bins defined along
their C, RMSD to a reference folded structure. Any microbins
that did not involve any direct or indirect microbin-to-
microbin transitions to the unfolded or folded states were
removed, and their corresponding structures were reassigned
to nearby surviving microbins. The resulting MSM consisted of
3512 microbins computed using a 10 ps lag time, which was
reduced from 13,250 initial clusters (250 clusters per stratum).
Stratified bin boundaries were positioned at 0.1 A increments
along [1.1, 4.5], 0.2 A increments along [4.6, 6.4], and 0.3 A
increments along [6.6, 9.6]. The unfolded state was defined as
having >9.6 A C, RMSD from a reference folded crystal
structure (PDB 2HBB).” The folded state was defined as
having <1 A C, RMSD from the same reference structure.

For our WE simulations of NTL9 protein folding, synMD
trajectories were propagated among the 3512 microbins of the
MSM mentioned above using a resampling time interval 7 of
10 ps. At each 7, the microbin that was visited by a trajectory
was backmapped to a representative structure of that microbin
(k-means cluster) to generate discrete trajectories of the NTL9
folding process. To maintain nonequilibrium steady state
conditions, a trajectory reaching the target folded state was
“recycled” by initiating a new trajectory from a randomly
selected conformation of the initial unfolded-state ensemble
with the same statistical weight. The initial unfolded-state
ensemble consisted of 22 representative conformations, and
the folded state consisted of a single structure. To generate the
unfolded-state ensemble, we applied stratified k-means
clustering as described above to the 2.5 us cMD simulations
of the NTL9 protein folding process to yield 22 clusters, and
for each of these clusters, we selected the conformation closest
to the center of the cluster. The resulting ensemble of initial
unfolded conformations were assigned equal statistical weights.

2.4. Training of Convolutional Variational Autoen-
coder Models. The VAE is a deep neural network
architecture that can be used for unsupervised learning of a
continuous latent-variable model that captures salient features
of a data set. A VAE consists of an encoder q¢(zlx(i)) that
compresses input data ' into a small latent code z and a
decoder pg(x(i |z) that reconstructs the code to its original
form.** VAEs are trained on a joint optimization objective
function that attempts to minimize the reconstruction error of
the input data and maximize the correspondence to a selected
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prior distribution py(z) (e.g, Gaussian) by computing the
Kullback—Leibler (KL) divergence, which acts as a regularizer,
via the loss function

L6, ¢5 x7) = ~Dy (q,(z1x) llp, (=)

+ [Eqd](m(i))[log 2 (x"12)] (1)

In this work, we employed a CVAE.”” The encoder network
was parameterized with a series of four convolution layers each
with 16 filters and a kernel size of 3 connected to a 128
dimensional linear layer with 0.5 dropout probability. The
linear layer processed the flattened output tensor of the final
convolutional layer, which together, reduced the 40 X 40 input
contact matrix into a three-dimensional information bottleneck
forming a latent space representation of the trajectory data
following an approach similar to Romero et al.** The decoder
module mirrors the encoder using a series of transposed
convolutions to parameterize the network. A rectified linear-
unit (ReLU) activation function was used between each
interior layer, transforming the final layer output via a sigmoid
activation function to act as a Bernoulli distribution of the
contact probability for each residue pair. As the contact map
elements are binary, we computed the reconstruction loss by
taking the binary cross-entropy loss of the predicted sigmoidal
outputs against the ground truth contact. To regularize the
model, we used a standard normal Gaussian distribution N(0,
1) prior for which a closed-form KL divergence was derived."”*
The model was trained using the RMSprop optimization
algorithm%’47 with a learning rate of 0.001 and minibatch size
of 64 for 100 epochs (cycles of DL training) until convergence
of the loss function and variance-bias trade-off (Figure S1).
During inference, latent space conformer representations are
directly computed as the encoded mean vector instead of the
resampled vector used during training to ensure consistent and
reproducible representations. CVAE models were imple-
mented using the mdlearn Python library.'® Full details of
the training data sets are as follows.

2.4.1. Pretrained DL WE Simulations. For these simu-
lations, a deep CVAE model was pretrained on representative
conformations of each MSM microbin for NTL9 protein
folding with the addition of 21 folded-state conformations.
These conformations were generated using 21 1 ns of cMD
simulations propagated from the single folded structure of our
MSM. Given that the MSM only included a single folded
conformation, the addition of 21 folded conformations was
necessary to provide an equal number of conformations for the
folded and unfolded states in the training set for the CVAE
model (i.e., 22 conformations for each state).

2.4.2. On-the-Fly DL WE Simulations. For these simu-
lations, an initial CVAE model was trained on a base data set of
2000 conformations from 20 ns (2000 steps) of synMD
trajectories combined with the 22 folded conformations
mentioned above. A new CVAE model was then trained
every 10 WE iterations by updating the base data set with data
(contact maps) from the latter SO WE iterations. This periodic
updating of the training data set enabled the CVAE model to
“learn” an improved internal latent space representation of the
system as new regions of conformational space were explored.

2.4.3. Use of CVAE and Alternative Models. CVAE offers a
level of convenience that enables the learning of a simple, low-
dimensional manifold that captures the intrinsic folding
dimensions of the simulations explored here. As demonstrated
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in several applications,”””**" the CVAE-learned manifold can
cluster the conformations from ensemble simulations in the
latent space corresponding to biophysically relevant features.
We also note several alternative approaches for the choice of
the machine learning methods exist, including linear methods
such as anharmonic conformational analysis* or hybrid
variants,”” and these methods could also be incorporated
into the framework. We also note that other methods such as
state predictive information bottleneck®® can be integrated into
the framework. Moreover, previous work from our group has
demonstrated that the CVAE-learned latent manifold provides
robust information for subsequent stages of enhanced sampling
workflows, including bounding the space for outlier
detection,"® which can be challenging for DL methods.

2.5. Binless Control Simulations with Sorting by
RMSD. To assess the impact of DL on the efficiency of our
WE simulations, we performed bin-less control WE simulations
without using the DL-based CVAE model to identify outlier
trajectories. In these control simulations, trajectories were
randomly shuffled before applying the WE resampling
procedure, which was based on the C, RMSD from the folded
structure. The top six outlier trajectories were selected as
candidates for splitting, and the bottom 12 inlier trajectories
were candidates for merging. We also evaluated the
effectiveness of sorting the trajectories solely by their LOF
scores in CVAE latent space representations, without any
additional ranking based on C, RMSD from the folded
structure.

2.6. Binned Control Simulations with an RMSD
Progress Coordinate. As another point of comparison, we
ran binned control WE simulations without the use of DL,
employing a one-dimensional progress coordinate consisting of
the C, RMSD from the folded structure and rectilinear bins
positioned using the minimal adaptive binning (MAB)
scheme.”" We applied the MAB scheme with 10 rectilinear
bins between the trailing and leading trajectories, up to 2 bins
for the bottleneck and leading trajectories, and 6 target
trajectories per bin to yield a similar total number of
trajectories as the other WE protocols used in this study (M
= 72 trajectories).

2.7. Calculation of the Folding Rate Constant. The
folding rate constant kg,q was directly calculated from our WE
simulations using the following exact Hill relation™

1

— = Flux(U > FISS)
MFPT(U — F)

k —
fold (2)
where MFPT(U — F) is the mean first-passage time (average
time) it takes for the protein to transition from the unfolded to
the folded state and Flux(U — FISS) is the nonequilibrium
steady-state probability flux carried by trajectories originating
from the unfolded state and reaching the target folded state.
Uncertainties represent 95% credibility regions over 10 trials of
WE simulation, as determined using a Bayesian bootstrap
method.*>** The ground-truth kg4 value was determined from
our generative MSM model using the Deeptime Python
library.>> The kg4 estimates in this study are based on
simulations of NTL9 folding in implicit solvent with low
solvent viscosity (collision frequency y = 5 ps™).”" Thus, while
NTL9 folding occurs on the millisecond timescale at water-like
viscosity (y = 80 ps™!), it occurs on the microsecond timescale
in our simulations.
2.8. Estimating DL-Enhancement of WE Efficiency.
The efficiency S; of a DL-enhanced WE simulation over a
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control WE simulation in computing a rate constant of interest
(here, the folding rate constant kg,q) was estimated using the
following equation'”°

]2

(kcontrol
kpy,

where f.ouuol/test 1S the total simulation time for a control/test
simulation, respectively, and K quol/cese 1S the relative error in
the kg4 estimate (ratio of the width of the uncertainty of the
rate constant relative to the value of the rate constant, where
the uncertainty represents the 95% credibility region) for the
corresponding simulations. Thus, the efficiency of a WE
simulation in calculating the rate constant is determined by
taking the ratio of the total simulation times for the control and
test WE protocols that would be required to estimate the rate
constant with the same relative error, assuming that the square
of the width of the 95% credibility region on the rate constant
is inversely proportional to the total simulation time.*®

t
control
S, = ~ontrel

(3)

tpL

3. RESULTS AND DISCUSSION

We have developed a WE simulation method that applies DL
to learn an effective progress coordinate “on-the-fly” during a
simulation. The DL process involves identifying outlier
trajectories based on a LOF anomaly score in latent space
and the C, RMSD from the target state in real space. Our
benchmark application is the simulation of the NTL9 protein
folding process using discrete-state synMD trajectories. To
assess the impact of DL on the efficiency of the WE
simulations, we ran control WE simulations without DL
using (i) a “binless” approach where trajectories are sorted by
the C, RMSD from the folded state and (ii) a rectilinear,
adaptive binning approach along a one-dimensional progress
coordinate consisting of the C, RMSD from the reference
folded structure. We also determined the effectiveness of
applying DL on-the-fly during a WE simulation vs pretraining
on cMD simulation data prior to running a WE simulation.
Key details of all WE simulation protocols used in this study
are summarized in Table 1.

Table 1. WE Simulation Protocols Used in This Study”

outlier
WE protocol  identification deep-learning (DL) training
on-the-fly by LOF and every 10 WE iterations on data from the
DL RMSD latter SO WE iterations
pretrained by LOF and once from 2.5 ps <MD simulations
DL RMSD
binless by RMSD none
control
binned by RMSD none
control

“For each WE protocol, we summarize the criteria for identifying
outlier trajectories and simulation data used for DL training. WE
simulations using either pre-trained or on-the-fly DL identified outlier
trajectories in a “binless” manner based on the LOF score in a three-
dimensional CVAE latent space model of the system and C, RMSD
from the folded structure in real space. Two types of control
simulations were run without the use of DL: (i) binless control
simulations where outlier trajectories were identified based on the C,
RMSD from the folded structure, and (ii) binned control simulations
where adaptive binning was applied along a progress coordinate
consisting of the C, RMSD from the folded structure.
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3.1. Unsupervised Learning ldentifies Unfolded,
Intermediate, and Folded States. Before applying on-the-
fly DL during a WE simulation, we verified that a CVAE latent
space representation of data from a set of cMD simulations of
the NTL9 folding process (2.5 ps of total simulation time)
could identify key stable or metastable states. As shown in
Figure 3, a three-dimensional CVAE representation of the
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Figure 3. Pretrained CVAE model identifies key states for the NTL9
protein folding process. A three-dimensional CVAE latent space
model pretrained using a NTL9-folding simulation data set with data
points colored by the C, RMSD from the folded structure. The
training data set was generated using a set of representative structures
for the microbins of a MSM (one structure for each microbin) that
was constructed using 2.5 ps total simulation time of cMD
simulations with conformations saved every 10 ps and an additional
21 folded state structures generated from 21 ns of cMD simulations
from a folded state structure. This pretrained CVAE model separates
key states of the NTL9 folding process, revealing unfolded,
intermediate, and folded states.

simulation data was sufficient for this identification when the
data were colored according to the C, RMSD from the folded
structure.

3.2. Real-Space Structural Metric Is Necessary to
Identify Outliers. Our results revealed that the sorting of
trajectories by the LOF score in latent space was not sufficient
for efficient generation of successful folding events and that
additional sorting using a real-space structural metric (i.e.,
RMSD) was necessary. When only sorting by the LOF score,
the WE simulations sampled primarily the unfolded state
(high-RMSD region; Figure 4A). On the other hand,
additional sorting by RMSD resulted in extensive sampling
of latent space and the identification of outlier conformations
along the periphery (Figure 4B). This additional sorting more
than doubles the number of successful folding events by
replicating trajectories at the leading edge while terminating
trajectories at the trailing edge (Figures SA and S2).
Furthermore, binless control simulations (without DL) with
sorting of trajectories by only RMSD were able to generate
successful events, while those with random sorting of
trajectories were unable to generate any successful events
(Figures S3—S4).

3.3. On-the-Fly DL Enhances WE Efficiency. We next
tested the effectiveness of the on-the-fly DL of a progress
coordinate during a WE simulation of the NTL9 folding
process. Compared to the binless control simulations,
pretrained DL simulations were 3-fold more efficient in
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A

Sorting by LOF

B Sorting by LOF and RMSD

@ inliers

Figure 4. A real-space structural metric is necessary to identify
productive outliers in latent space. Three-dimensional CVAE latent
space representations of the NTL9 folding process based on
pretrained DL with (A) sorting by only the LOF score and (B)
sorting by both LOF score and a real-space metric (C, RMSD from
the folded structure). Conformations identified as outliers are colored
yellow and those identified as inliers are colored red.

A

outliers

10

Number of
successful trials

Figure S. Number of successful simulation trials and average kg4
estimates generated by each WE protocol. (A) Number of successful
trials for each WE protocol. A trial was considered successful if the
keq estimate was within 1 order of magnitude of the ground-truth
value [dashed horizontal line in (B)]. (B) The average kg estimate
generated by each WE protocol. Uncertainties represent 95%
credibility regions over 10 trials for each WE protocol, as determined
using a Bayesian bootstrap method.”>** Data shown for each WE
protocol are based on the same total simulation time of 14.5 us.

estimating a kg value (Table 2). On-the-fly DL simulations
were also more efficient, but to a smaller extent (2.2-fold),
partially because our estimate of the efficiency includes the 2.5
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Table 2. Efficiency of DL-Enhanced versus Control WE
Simulations”

total Sy relative S, relative
simulation  to binless to binned
WE protocol  kgq (s') Ak time (us) control control
on-the-fly 3.0x10° 27 83 22 13
DL
pretrained 67 x10° 2.5 72 3.0 1.8
DL
binless 63 x 10" 2.1 309 1.0 0.6
control
binned 45x10° 13 46.3 1.7 1.0
control

“The efficiency Sy is estimated by taking the ratio of total simulation
times for the DL-enhanced vs. binless or binned control WE
simulations that would be required to estimate the rate constant kgg
with the same relative error Ay, which is the ratio of the width of the
95% credibility region on kg, and the estimated value of kg (see
Methods).”*® The total simulation time for pre-trained DL
simulations includes time invested for the ¢cMD simulations used
for DL training. All simulations were run until the ground-truth value
fell within their corresponding 95% credibility regions (Figure S7).

us in aggregate of cMD simulations used for DL training. Both
on-the-fly and pretrained DL simulations exhibited a
substantially lower variance in the rate-estimates relative to
the binless control simulations with the same total simulation
time (Figures 5B and S5).

We also compared the efficiency of our DL-enhanced WE
simulations relative to binned control WE simulations
employing the MAB scheme (see Methods),”" which has
been shown to efficiently surmount large barriers. We applied
this adaptive binning scheme along a one-dimensional progress
coordinate consisting of the C, RMSD from a reference folded
structure. The use of DL also showed a marginal increase in
efficiency compared to the binned control simulations, with a
1.3-fold gain for on-the-fly DL and 1.8-fold gain for pretrained
DL (Table 2). Among all the WE protocols, the adaptively
binned WE simulations were the most efficient in generating
initial folding events (Figure S2) but did not reach a steady
state that yields the ground-truth kg4 value. The DL-enhanced
WE simulations were reasonably converged, reaching the
ground-truth value within the same total simulation time.

Compared to the binned control simulations, the greater
efficiency of both the on-the-fly and pretrained DL-enhanced
WE simulations in reaching the ground truth appears to be due
to their “binless” nature. These binless strategies allow us to
allocate a majority of the M trajectories for exploitation toward
the target state, potentially leading to faster convergence to a
steady state that yields the ground-truth kg4 value. However,
these strategies resulted in a relatively wide range of trajectory
weights, yielding abrupt “ramp-up” times in the kinetics in
contrast to the exponential ramp-up times that are character-
istic of a binned strategy (Figures $5—56)"" and thereby
relatively large variances in the folding rate estimates between
trials (Figure SA). On the other hand, the WE simulations with
adaptive binning resulted in a more narrow range of trajectory
weights (Figure S8) with slower convergence to a steady state
but lower variance in rate estimates between trials.

3.4. Overhead of DL Training. We note that the reported
efficiencies (S; values) for our DL-enhanced WE simulations
do not include the overhead for training the CVAE model.
With the exception of the pretrained DL protocol, a single trial
of each WE protocol was completed within minutes to hours,
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highlighting the advantage of using synMD trajectories for
rapid testing in methods development. Although the wall-clock
time for a pretrained DL simulation was only 0.22 h for
running the WE of synMD trajectories, ~30 h was required to
complete the cMD simulations for pretrained the CVAE model
(Table 3). On the other hand, the on-the-fly DL simulations

Table 3. Wall-Clock Times for Each WE Protocol”

WE protocol wall-clock time (hrs)
on-the-fly DL 1.57
pretrained DL 30.22
binless control 0.08
binned control 0.05

“Wall-clock times required for running a single WE trial simulation
with 1.45 ps total simulation time and any DL training. Each
simulation was run using a single thread of an AMD Ryzen 9 7950X
CPU. DL training was performed on a single NVIDIA RTX 4090
GPU.

required only a small initial data set (here, 20 ns of synMD
trajectories). Relative to the binless and binned control
simulations, the >20-fold longer wall-clock time of the on-
the-fly DL simulations is due to the substantial overhead for
training the deep CVAE models. For future simulation studies,
we recommend starting with on-the-fly DL WE simulations to
generate initial successful pathways for a rare-event process of
interest, then running additional WE trials using the final
updated DL model. We note that the training data used for our
pretrained model does not accurately represent the steady-state
distribution. As a result, neither the pretrained nor on-the-fly
DL protocol accurately captures the upper bound for
simulation performance. The simulation performance can be
further optimized by optimizing various WE and LOF
parameters as described in the Methods.

3.5. Comparisons of Binless and Binned Strategies.
As is evident in our results, binless strategies have certain
strengths and limitations relative to binned strategies. Binned
strategies provide even coverage of the state space by
maintaining a target number of trajectories per bin. However,
such strategies require a rapidly increasing total number of
trajectories as the simulation progresses. On the other hand,
binless strategies maintain a fixed total number of trajectories
but result in uneven coverage of state space. In terms of
maintaining trajectory information, binned strategies merge
only trajectories within the same bin, while binless strategies
might merge trajectories that occupy distant regions of state
space and reduce the number of distinct trajectories. While
binless strategies are more efficient in generating continuous
pathways, due to uneven coverage and loss of distinct
trajectories, binless strategies may overestimate rates with
larger variation between WE trials while binned strategies can
provide convergence to accurate rates depending on the
timescale of the process (Figure S7).°* To improve binless
strategies for more accurate and precise rate estimates, one can
increase the number of total trajectories, as well as modify the
criteria for merging trajectories to prevent any loss of distinct
trajectory information.

4. CONCLUSIONS

We have developed a WE path sampling method that applies
DL on-the-fly to learn effective progress coordinates during a
simulation. Our DL-enhanced WE method learns progress

coordinates by identifying outlier trajectories based on
relatively low local densities in latent space, as quantified by
LOF scores and structural information in real space (RMSD
from the target structure). We applied our method to
simulations of the NTL9 protein folding process using
discrete-state synMD trajectories.

Our “binless” WE method was ~3-fold more efficient than
binless control simulations with no DL and 1.8-fold more
efficient than binned control simulations with no DL. These
gains in efficiency underscore the value of projecting high-
dimensional simulation data onto a low-dimensional latent
space model for identifying progress coordinates that are
effective for rare-event sampling. It is worth noting that our
reported efficiency gains account for only the total simulation
times and not for the overhead of training the DL models. To
reduce this overhead, we have been integrating the WESTPA
software with the Colmena framework™”® to implement
model-training in parallel with the execution of WE
simulations (unpublished work).

While our binned control simulations achieve the highest
precision in rate-constant estimates, these simulations do not
reach the ground-truth rate constant within the same total
simulation time as that used for our on-the-fly DL protocol.
On the other hand, the on-the-fly DL protocol reaches the
ground truth, but with a higher variance in the rate-constant
estimates. The necessity of using a real-space RMSD metric in
addition to the latent space LOF score highlights the challenge
of identifying productive outlier conformations in latent space
without a physically intuitive structural metric. Finally, we note
that the DL method used here represents a simple prototype,
and future versions of our framework will allow the integration
of techniques such as information bottleneck,’” Deep-TICA,"’
and other techniques.'””.
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