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ABSTRACT: Atomically detailed views of molecular recognition events are of great interest to a variety of research areas in biology
and chemistry. Here, we apply the weighted ensemble path sampling approach to improve the efficiency of explicit solvent molecular
dynamics (MD) simulations in sampling molecular association events between two methane molecules, Na* and Cl~ ions, methane
and benzene, and the K jon and 18-crown-6 ether. Relative to brute force simulation, we obtain efficiency gains of at least 300 and
1100-fold for the most challenging system, K'/18-crown-6 ether, in terms of sampling the association rate constant k and
distribution of times required to traverse transition paths, respectively. Our results indicate that weighted ensemble sampling is likely
to allow for even greater efficiencies for more complex systems with higher barriers to molecular association.

1. INTRODUCTION

Proteins bind their partners in a highly specific manner.
Understanding the mechanisms of these binding events is not
only fundamentally interesting but could also impact fields such
as protein engineering, host—guest chemistry, and drug discov-
ery. Atomistic molecular dynamics (MD) simulations can poten-
tially offer the most detailed views of molecular recognition
events, especially when performed with explicit solvent. How-
ever, only up to a microsecond of simulation is practical on
typical computing resources, while protein binding events re-
quire microseconds and beyond." It is therefore computationally
prohibitive to capture these events by sufficiently long “brute
force” simulations. Fortunately, the long time scales required for
protein binding events are not necessarily a result of the actual
events taking a long time; instead, the events may be fast but
infrequent, separated by long waiting times.

Path sampling approaches® ' aim to capture rare events by
minimizing the simulation of long waiting times between
events."" Weighted ensemble sampling” is one such approach
which is rigorously correct for any type of stochastic simulation, ™
easily parallelized, and simultaneously provides both transition
paths and their associated kinetics.” Weighted ensemble sam-
pling has been applied to Brownian dynamics simulations of
protein—protein binding,” protein—substrate binding,"* protein
folding,14 Monte Carlo simulations of large-scale conformational
transitions in the molecular switches calmodulin'® and adenylate
kinase,'® and molecular dynamics simulations of alanine dipep-
tide in implicit solvent.!”

We apply the weighted ensemble path sampling approach with
explicit-solvent MD simulations. Our goal is to determine the
efficiency of the weighted ensemble approach relative to brute
force simulation in sampling molecular associations for a range of
well-studied systems: methane/methane,'®7>* Na®/Cl~, >3
methane/benzene,>*** and K /18-crown-6 ether36’37(Figure 1).
These systems were chosen because of their small size and
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relatively low barriers to association (~2kgT); combined, these
features make feasible the simulation of association events by
brute force, providing us with opportunities to evaluate not only
the efficiency of the weighted ensemble approach but its validity
as well.

2. THEORY

2.1. Overview of Weighted Ensemble Sampling. Weighted
ensemble sampling uses “statistical ratcheting” to efficiently
sample rare events using stochastic simulations.”""'>'7 To
monitor the progress of these simulations toward the rare event
of interest (here molecular association), a progress coordinate
between the source (A, unbound) and destination (B, bound)
states is defined by one or more order parameters; this progress
coordinate is then divided into bins. A number of simulations are
started in the unbound state A, which are then propagated for a
fixed time 7. After this propagation time, if a simulation has
progressed into a bin closer to the destination state B, its current
state is used to start replicas of that simulation; these replicas
diverge due to the stochastic nature of the underlying dynamics.
Alternatively, if the simulation has regressed toward the source
state A, it is effectively terminated. This resampling procedure'>
involving the replication of productive simulations and termina-
tion of unproductive simulations is repeated at fixed intervals
(7, 27, 37, and so on) until the desired number of rare events
(crossings into state B) is sampled. Once a simulation reaches the
destination state B, it is removed from the destination state B and
“recycled” as a new simulation starting from the source state A. As
this propagation and resampling procedure is repeated, the
transition path ensemble—an ensemble of continuous trajec-
tories between the source and destination states—is generated.
As shown in Figure 2, some common history is shared among this
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Figure 1. Molecular recognition systems of this study. From left to right, two methane molecules, Na'/Cl~, benzene and methane, and a K ion with
18-crown-6 ether. All systems were immersed in explicit water molecules. (Prepared with VMD.>®)
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Figure 2. Schematic diagram of weighted ensemble molecular dy-
namics trajectories. Replication and termination of simulations occurs
at intervals of 7, the propagation/resampling time. Trajectories a and b
are terminated at t = 37, and trajectory c reaches the destination state at
t = 47, at which time its statistical weight is assigned to a newly created
replica which traces out trajectory h; the dotted arrows indicate a transfer
of statistical weight but not history. Trajectories are replicated at t = 7,
t=27,and t = 5T. Note that trajectories e, f, and g share common history
but are independent from trajectories d and h, which themselves are
mutually independent.

ensemble of trajectories, and each trajectory has a maximum
length TN, after N, iterations of propagation and resampling.
When the trajectories are generated using molecular dynamics
simulations, a stochastic thermostat is required to allow for
divergence of trajectories after resampling.

To maintain correct statistics and kinetics of the transition
paths, each simulation is assigned an appropriate statistical
weight. When simulations are replicated, their statistical weights
are split. When simulations are terminated for regressing toward
the source state A, their statistical weights are merged into
existing replicas, and when simulations are terminated for reach-
ing the destination state B, their statistical weights are removed
from the destination state B and assigned to newly created
replicas in the initial state A.

2.2. Rate Constants. Weighted ensemble sampling yields
kinetic information as a simulation progresses. After steady-state
probability recycling is attained, the rate constant k is given by the
average probability current I into the destination state B:>">*

k = (Is) (1)

where the angle brackets indicate a time average. Because the
recycling procedure described above eliminates all probability
from the destination state B at each resampling, the probability
current Iy may be approximated as

- PB(TNT)
Iy = — (2)

where 7 is the weighted ensemble propagation/resampling time
step and Pg(TN,) is probability contained in the destination state
at time TN, (weighted ensemble iteration N;) immediately prior
to recycling. Since P3(7N;) must be monitored in order to ensure
probability conservation during a weighted ensemble simulation,
the rate constant k is obtained “for free.”

The partially shared history of weighted ensemble trajectories
results in highly correlated probability current measurements;
that is, Iz(7N,) and Iz(t[N, — 1]) are not statistically indepen-
dent. The time average (Iz) may be computed in the usual way,
but the associated confidence interval (encompassing the statis-
tical error in the rate constant) must be computed with a method
that accounts for the time correlation within I, such as Monte
Carlo bootstrapping.>*>*!

On the other hand, the quantity accessible from brute force
dynamics is not the probability current into the destination state
but is rather a set of elapsed times between completed transition
events. That is, brute force simulation does not yield the rate
constant directly, but rather the first passage time distribution.
For transitions dominated by a single time scale, this distribution
is exponential, and the rate constant is simply the inverse of the
mean first passage time <tfP>Z39

k= (ty) (3)

It should be noted that these two methods for determining the
rate constant k are alternative mathematical descriptions of the
same underlying physical principles (for an extensive discussion,
see ref 39). Thus, rate constants obtained from brute force and
weighted ensemble simulations may be directly compared, given
that the same model was used for propagating dynamics in both
cases and that the confidence interval for the rate constant is
calculated correctly for the weighted ensemble simulation.

2.3. Transition Event Durations. If a system exhibits rare but
fast events, then the transition event duration t.4—the amount of
time it takes a transition to complete once it starts—is much less
than the mean first passage time {tg,) (which includes the waiting
time between rare events):

fea < (tpp)

The probability distribution of t.4, F(t.q), is at least approxi-
mately an indicator of the extent of sampling of the transition
pathways. Distinct pathways will have associated characteristic
transition durations,*” and as transition pathways are sampled,
F(t.q) will become better resolved. Thus, the self-convergence of
F(t.q) is a strong indicator that the transition path ensemble has
been adequately explored.

The transition event duration distribution F(t.q) is built up
directly from simulation trajectories simply by noting the time
elapsed between exiting the source state A and entering the
destination state B. In the brute force case, a set of event
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durations is transformed directly into a cumulative distribution
function in the usual manner (by counting the number of 4 less
than a specified value):

Flt) = 3 2 hltay) @

where i indexes transitions, N is the number of transition events
observed, t.q(; is the duration of transition event i, and h is an
indicator function satisfying

1 iftedi = fed
M) = 9 o ofbe

otherwise

Weighted ensemble simulations, on the other hand, yield not
the set of event durations {t.q} but a set {(t.qw)} of transition
event durations and corresponding terminal statistical weights.
These terminal weights partially encode the probability of
arriving at the final state, and so a weighted variation of eq 4
must be used:

Zwih(ted(i))
F(tea) = T (3)

There are several advantages to describing the transition event
duration distribution as an (empirical) cumulative distribution
function. First, rigorous confidence bands may be assigned to
empirical distribution functions,**** allowing one to assign error
bars to the entire ¢4 distribution and facilitating the comparison
of simulation results. Second, the number of points N, in a
realization of F(t.q) is equal to the number of unique transition
event durations sampled and, as such, can be considered a
statistical sample size for the purposes of quantifying sampling,
even in the weighted ensemble case. For this same reason, eq S,
despite being cast in a weighted form, describes a formal
empirical distribution function and is therefore an unbiased
estimator of the true cumulative distribution function.**

2.4. Relative Efficiency of Weighted Ensemble Simula-
tions. Any meaningful metric for comparing the relative effi-
ciencies of weighted ensemble and brute force simulations must
account for not only the computational expense of obtaining an
estimate on a quantity such as the rate constant, but also the
uncertainty of that estimate. In other words, an efficiency metric
must take error bars into account. For a given quantity like the
reaction rate k, we define the efficiency of weighted ensemble
sampling relative to brute force as

5 — o) (6)
feff

where t(g) is the aggregate weighted ensemble simulation time
(not overcounting shared history) and f.¢is the effective amount
of brute force simulation time that would be required to obtain an
estimate with the same size error bar as that obtained from a
weighted ensemble simulation. Consideration of the error struc-
ture of brute force simulations and application of eq 6 gives the
following efficiency metrics S; and S.q4 for sampling of the
association rate constant k and f.4 distribution, respectively:

L) Ak ) (7)

ter (N,
5 — e (Neewr) ()

twE) \ Nesr)

where f represents total simulation time, Ak* is the width of the
95% confidence interval on the rate constant k relative to the time
average (k), and N is the number of unique time values in the
empirical distribution function F(t.q); the subscripts (BF) and
(WE) represent values from brute force and weighted ensemble
simulations, respectively. Detailed derivations of eqs 7 and 8 are
provided in the Supporting Information.

3. METHODS

3.1. Model Systems. Four systems were used to test the
feasibility of using weighted ensemble sampling with explicit-
solvent MD simulations to study molecular association events.
These systems all possess simple, one-dimensional progress
coordinates by which it is possible to unambiguously define
“how close to binding” a simulation is at any point in time. All
systems were immersed in boxes of explicit water molecules. The
model systems in order of progressively more challenging
features are described below.

Methane/Methane. This system is a simple example of a
hydrophobic interaction. The natural progress coordinate of this
system is simply the center-to-center distance between the two
methane molecules.

Na™/CI™. This system is a simple example of an electrostatic
interaction. The natural progress coordinate of this system is the
center-to-center distance between the two ions.

Methane/Benzene. Like the methane/methane system,
methane/benzene is a model of hydrophobic interactions, but
unlike the previous two systems, it does not exhibit an effective
spherical symmetry. However, our brute force simulations of this
system revealed that the condensed-phase bound state involves
precession of the methane molecule about the surface of the
benzene ring. Therefore, despite the broken spherical symmetry,
the natural progress coordinate for this system is effectively one-
dimensional and was taken to be the distance between the
methane carbon and the center of mass of the benzene
carbon atoms.

K*/18-crown-6 ether. This system is a simple example of the
binding of a (trivially) rigid substrate (K™*) by a flexible partner
(18-crown-6 ether). Like methane/benzene, this system does
not exhibit effective spherical symmetry. However, both
simulation®***” and X-ray crystallography® have indicated that
the bound structure consists of the K" ion coplanar with the
crown ether oxygen atoms. The natural progress coordinate for
this system is therefore the distance between the K ion and the
center of mass of the ether oxygen atoms.

3.2. Simulation Details. Both brute force and weighted
ensemble simulations were performed using the GROMACS
4.0.5 software package.* Production dynamics (both brute force
and weighted ensemble) were propagated in the canonical
(NVT) ensemble at 300 K using a Langevin thermostat*’
(coupling time 1 ps). Van der Waals interactions were switched
off smoothly between 8 and 9 A; to account for the truncation of
the van der Waals interactions, a long-range analytical dispersion
correction®® was applied to energy and pressure. Real-space
electrostatic interactions were truncated at 10 A. Long range
electrostatic interactions were calculated using particle mesh
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Ewald* (PME) summation. Bonds to hydrogen atoms were
constrained to their equilibrium lengths using LINCS,*® permit-
ting a 2 fs integration time step.

Each model system was constructed in its unbound state and
solvated in a dodecahedral periodic box with a minimum 12 A
clearance between the solutes and the box walls. Following a
1000-step steepest-descent energy minimization, each system
was subjected to 20 ps of NVT thermal equilibration followed by
1 ns of constant-pressure (NPT) density equilibration using a
weak isotropic Berendsen barostat™' (reference pressure 1 bar,
coupling time 5 ps, and compressibility 4.5 x 10~° bar ). In
both equilibration stages, all heavy atoms were restrained using a
harmonic potential. The resulting equilibrated systems were used
as starting points for both brute force and weighted ensemble
MD simulations. The initial pair separations were 10, 10, 17, and
15 A for methane/methane, Na®/Cl~, methane/benzene, and
K*/18-crown-6 ether, respectively. The GROMOS 45A3 uni-
ted-atom force field®> and SPC/E> water model were used for
methane/methane and Na™/ Cl, while the OPLS-AA/L force
field** and the TIP3P®® water model were used for methane/
benzene and K*/18-crown-6 ether. Atom type assignments for
K*"/18-crown-6 ether ether are provided in the Supporting
Information (Figure S1).

3.3. Brute Force Dynamics Propagation. Brute force simula-
tions for all model systems were started from the end points of
their respective second-stage (density) equilibration runs. Each
simulation was continued until a sufficient number of transition
events was observed, with solute positions recorded every 10 fs.
The methane/methane and methane/benzene systems were
both run as single 1 us trajectories. Na*/Cl™ and K'/18-
crown-6 ether required multiple independent trajectories to
observe a sufficient number of transition events. A total of 10
independent 1 us trajectories were run for Na*/Cl~, and 100
independent 100 ns trajectories were run for K*/18-crown-
6 ether.

3.4. Determination of Bound and Unbound States. The
analysis of brute force trajectories and the construction of
weighted ensemble simulations require unambiguous defini-
tions of bound and unbound states for each system. Because all
four model systems possess one-dimensional progress coordi-
nates, the same protocol for determining these states was
applied to all four model systems. Pairwise condensed-phase
interactions can be described by the potential of mean force
(PMF) u(r), the free energy of the system as a function of pair
separation r.°° Taking the zero of energy to be the noninteract-
ing limit, for constant-volume systems the u(r) is given by the

following:**
u(r)/ksT = — (ln@—ln i’;o)) 9)

o

where P(r) is the probability of observing the system at a pair
separation r, ry is the shortest distance at which the pair is
effectively noninteracting (du/dr ~ 0 for all r > ry), and the
factors of r* arise from the transformation between the Carte-
sian coordinates of the MD simulation and the spherical polar
coordinates in which u(r) is expressed. For each model system,
the PMF u(r) was determined using eq 9 with pairwise distance
probabilities P(r) taken from the brute force trajectories. The
unbound state A was defined as A = {r: r > r,}, where (as above)
ro is the shortest distance at which the pair is effectively
noninteracting. This definition ensures that binding events

observed in brute force simulations are very nearly statistically
independent. The bound state B was readily identified as being
near the global minimum of u(r) and defined as B = {r: r < r3},
where ry is the separation at which the global minimum well of
u(r) becomes concave up; that is, B is the basin of attraction of
the global minimum of u(r). The remainder of progress
coordinate space defines a transition region T = {r: rg < r <
oy wherein the partners are interacting but not definitively
bound. PMF curves for each system are provided in Figures
S$3—S6 of the Supporting Information.

3.5. Determination of Weighted Ensemble Simulation
Parameters. In addition to definitions of bound and unbound
states, a weighted ensemble simulation requires selection of
optimal bin sizes, numbers of replicas per bin, and propaga-
tion/resampling interval 7. In making these selections, the extent
of sampling should be maximized (generally meaning more bins
and more replicas per bin) while minimizing the overall compu-
tational cost (generally meaning fewer bins and fewer replicas per
bin).

For all four model systems, the potential of mean force was
used to determine a bin spacing aimed at maximizing the
“ratcheting” effect of the weighted ensemble approach. Where
the PMF was changing rapidly with respect to pair separation, bin
boundaries were chosen such that the crossing of a bin does not
require climbing more than ~kpT in energy as indicated by the
appropriate PMF. This ensures that the system can move about
the progress coordinate with relative ease. Conversely, in the
region where the PMF is slowly varying, a constant spacing of
bins was adopted. The propagation period 7 was then chosen so
that the RMS change in pair separation over a time T was
approximately equal to the width of the bins in the slowly varying
region of the PMF. This resulted in bins of width ~0.1—1.0 A.
Initial tests indicated that 50 replicas per bin yielded sufficiently
precise values for the rate constant k at a reasonable computa-
tional cost, so this value was used for all four model systems.
Detailed listings of the resulting bin boundaries are provided in
Figures S3—S6 (Supporting Information), and the remaining
weighted ensemble sampling parameters are summarized in
Table S1 (Supporting Information).

3.6. Weighted Ensemble Dynamics Propagation. Weighted
ensemble dynamics runs used exactly the same simulation
parameters (force field, thermostat parameters, box volume, etc.)
as those of the corresponding brute force simulations. As with the
brute force simulations, the initial atomic coordinates and
velocities were taken from the end of the equilibration phase
for each model system. The weighted ensemble sampling algo-
rithm was implemented in an in-house computer code as
described above. Replicas were propagated in parallel on 32—
96 CPU cores, requiring a few days to simulate each model
system. Both the rate constant k and the transition event duration
distribution F(f.q) were monitored every SO or 100 7, and the
weighted ensemble simulation was terminated when k was
constant within uncertainty and F(t.q) had converged to within
95% confidence and remained at that level, as determined by a
two-sided Kolmogorov—_Smirnov test™ (a standard test of the
statistical equivalence of two empirical distribution functions).
Though resampling was performed with a period of 7, all analysis
of the simulations was conducted at a time resolution of 10 fs
(the period with which solute positions were recorded during
the underlying dynamics simulations). The resulting aggregate
simulation times for each system are presented in Table S2
(Supporting Information).
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Table 1. Brute Force (BF) and Weighted Ensemble (WE) Aggregate Simulation Times ¢, Rate Constants (k), and Relative

Sampling Efficiencies (S;) for the Four Model Systems”

system typ twg
methane/methane 1 us 299 ns
Na™/Cl™ 10 us 3.86 us
methane/benzene 1 us 369 ns
K"/18-crown-6 10 us 322 ns

ke (ps™ ) kwe (ps ) Sk
1.9140.10 x 1073 1.61 4 0.06 x 103 7.0
1.86£0.09 x 10~* 1.8240.11x 10~* 1.4
8.6+07x10 * 77403 x 10 * 8.7
21+£03x10° 48402x10° 300

? Aggregate simulation times correspond to the combined length of all trajectories (either brute force or weighted ensemble) for each system, without
overcounting common history in the case of weighted ensemble simulations. Uncertainties on the rate constants represent 95% confidence intervals.

Relative efficiencies were calculated using eq 7.

Table 2. Ratios of Rate Constants k and Average Waiting
Times (t,,) for Brute Force (BF) and Weighted Ensemble
(WE) Simulations

system kewe)/ k) () 8F)/ ) (WE)
methane/methane 0.842 0.841
Na*/Cl” 0.977 0.977
methane/benzene 0.827 0.822
K*/18-crown-6 193 1.94

4. RESULTS AND DISCUSSION

The purpose of this study was to determine the efficiency of
weighted ensemble sampling relative to brute force sampling for
association events in four molecular recognition systems. As
described above, both the association rate constant k and the
transition event duration distribution F(t.q) can be used to
quantify sampling of the transition path ensemble. We compare
the efficiency and accuracy of weighted ensemble simulations
relative to brute force simulations in terms of both rate constants
and transition event distributions.

4.1. Rate Constants. The rate constant (k) values for brute
force and weighted ensemble simulations were separately con-
verged to within statistical uncertainty. As shown in Table 1, the
weighted ensemble simulations are in qualitative agreement with
brute force simulations for all systems; quantitative agreement
was achieved for Na*/Cl™ and methane/benzene. The relative
efficiency S, of weighted ensemble sampling of the rate constant
was modest (1.4-fold) for Na™/Cl~, greater than S-fold for the
diffusive systems (methane/methane and methane/benzene),
and 300-fold for the most complex system, K*/18-crown-
6 ether.

It is not surprising that the rate constant obtained by weighted
ensemble sampling for K™/ 18-crown-6 ether does not agree with
the brute force simulation, as the brute force F(t.q) did not
converge; it is less clear why the rate constants for methane/
methane are not in agreement. One possibility is that either the
brute force or the weighted ensemble simulation did not sample
the full set of waiting times between rare events. The waiting time
t, between subsequent A—B transition events relates the first
passage time fg, and the transition event duration f.4 according to

tfp = fed T by

In all cases (including that in which .4 and t,, are not statistically
independent):

<tfp> = <ted> + <tw>

where the angle brackets denote the expectation (mean) value.
Since (feq) < (tg) for all four systems considered here, the
discrepancy between brute force and weighted ensemble

simulations in mean waiting time (t,,) accounts almost comple-
tely for the discrepancy in rate constants between simulation
techniques (see Table 2). It is likely that the overestimated brute
force waiting time for K" /18-crown-6 ether is due to poor
convergence of the brute force simulation. Similarly, it seems
likely that the methane/methane brute force simulation under-
estimated t, for that system. In both of these cases, the
efficiencies presented in Table 1 represent lower bounds, as they
assume complete convergence of the brute force simulations.
Implicit in the foregoing analysis is the assumption that the
first passage time distribution F(tg,) obtained from the brute
force simulation is exponential, as would be the case in a system
possessing (effectively) a single barrier of constant height; that is,

F(ty,) = 1 — exp( — ktg,) (10)

where k is the rate constant. In this case, the rate constant k is
equal to the inverse mean first passage time [cf. eq 3]. If the first
passage time distribution F(fg,) is not exponential, then the
inverse mean first passage time is at best an approximation of the
true rate constant; conversely, the weighted ensemble approach
samples k directly, and so it can be expected to recover the correct
rate constant (within the bounds of statistical uncertainty)
regardless of whether the underlying physical mechanisms lead
to an exponential first passage time distribution. For three of the
four model systems (NaJr /Cl”, methane/benzene, and K /18-
crown-6), the first passage time distributions obtained from brute
force simulations conform to eq 10 to within 95% confidence
(see Figure S2, Supporting Information). For methane/methane,
however, the first passage time distribution deviates from the
expected exponential distribution for ¢, < 300 ps. This offers an
alternative explanation for why the rate constant values obtained
for methane/methane differ between brute force and weighted
ensemble simulations: because the first passage time distribution
F(tg,) is not exponential, the rate constant k obtained from the
brute force first passage time distribution as <tfp>_l may in fact be
inaccurate.

4.2.Transition Event Duration Distributions. In general, the
weighted ensemble simulations were as good or better than brute
force simulations in generating well-resolved transition event
duration distributions F(t.4). As shown in Figure 3, F(t.q) was
well-resolved by both brute force and weighted ensemble
simulations for all systems except K'/18-crown-6 ether, for
which brute force sampling was not capable of providing a
converged F(f.q) distribution. The resolution of distributions
from weighted ensemble simulations far exceeds that of distribu-
tions obtained from brute force simulations, as demonstrated in
the increased number N, of unique transition durations sampled
(see Table 3). Further, pathways generated by weighted ensem-
ble sampling and having different transition event durations were
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Figure 3. Transition event duration distributions obtained from (A) brute force and (B) weighted ensemble simulations. The cumulative distribution
function (CDF) of the transition event duration probability for each model system is shown in (C). The brute-force CDF is plotted as a 95% confidence
interval with dotted lines, and the solid line is the CDF obtained from the weighted ensemble simulation.

Table 3. Number of Unique Transition Durations N, and
Relative Efficiency S.4 of Sampling of the Transition Event
Duration Distribution for Brute Force (BF) and Weighted
Ensemble (WE) Simulations”

system N.(sE) N.(wE) Sed
methane/methane 1021 2304 7.5
Na*/Cl™ 1415 8780 16
methane/benzene 750 5485 20
K" /18-crown-6 145 5007 1100

“Relative efficiency was calculated using eq 8.

indeed noticeably different from each other (see Supporting
Information, section S.1, Figures S1 and S2, and Movies S1 and
S2). These are strong indications that the weighted ensemble
algorithm effectively enhances sampling of the transition path
ensemble. The relative efficiency S.q of sampling F(t.q) increased
with the complexity of the molecular recognition system, ranging
from 1 to 3 orders of magnitude. The 1100-fold relative efficiency
of weighted ensemble sampling for K™/18-crown-6 ether is a
conservative estimate, as the referenced brute force simulation
had not even reached convergence with respect to F(t.q).

As shown in Tables 1 and 3, S; < S.q in all four cases. This is
partly a consequence of our definitions of the efficiency metrics
St and S.q (see above and Supporting Information), but it also
reflects that the rate constant k is generally more difficult to
sample than the set of transition event durations {f.q}. In

particular, convergence of the rate constant k requires sampling
of all important pathways as well as a steady state flow of
probability through them.

4.3. How Much Sampling Is Required? As evident for K/
18-crown-6 ether, the most complex system of this study, it is not
always possible to obtain converged brute force simulations of
molecular association events. In such cases, how does one know if
the weighted ensemble approach has achieved sufficient sam-
pling? One can, at least, gauge the self-convergence of the
association rate constants k and the transition event duration
distributions F(t.q) obtained from the weighted ensemble simu-
lations. However, self-convergence of these metrics does not
guarantee that the simulation has converged to the true value of k
or F(t.q).

As an illustration, consider the convergence of F(t.), the
probability distribution of the event duration times Ft.4. Even if
two transition event distributions F,(l)(ted) and F‘L’(Z)(ted) ob-
tained by time points N(;) and Nz(;) > Ny(;) in a weighted
ensemble simulation are statistically equivalent, this does not
necessarily indicate asymptotic convergence on the true transi-
tion event duration distribution. Because a weighted ensemble
simulation of length iterations contains only trajectories of
maximum length TN, then the statistical equivalence of Fy(;)(feq)
and Fy(3)(feq) does not indicate that the entire event duration
distribution has been adequately sampled, merely that all path-
ways taking time t < TNy(j) to traverse have been adequately
sampled. Thus, for a weighted ensemble simulation of length
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TN, one must ultimately decide whether data obtained for time
scales less than TN are sufficient to provide insights into the
systems under study.

4.4. How Does One Choose Optimal Weighted Ensemble
Parameters? Efficient use of weighted ensemble sampling
involves finding the optimal balance between computational
expense and level of sampling. A poor choice of progress
coordinate bins can easily lead to oversampling relatively unim-
portant regions of phase space. A large number of replicas not
only aids rapid exploration of phase space but also determines the
precision of probability current value and thus kinetic informa-
tion; however, the total computational cost of weighted ensem-
ble scales approximately linearly with the maximum number of
system replicas. A short propagation/resampling period 7 allows
many opportunities for replicas to split and explore newly visited
regions of phase space and for replicas to merge to avoid
oversampling regions of phase space but ultimately may not
allow sufficient divergence of trajectories to allow for efficient
exploration of phase space.

Integral to the construction of a weighted ensemble simulation
is the choice of a progress coordinate that is sufficiently sensi-
tive to quantify “how far along” the reaction is. Any number
of relatively low-cost enhanced-sampling or energy landscape
smoothing techniques®’ *” might be employed to guide the
choice of a progress coordinate, including metadynamics;**®!
targeted,é2 steered,63 or accelerated®* molecular dynamics; or the
recently developed orthogonal space random walk method.%® A
number of short brute force simulations may be required to
determine the average time evolution of the progress coordinate,
which in turn determines the most efficient choices of bin spacing
and the propagation/reweighting period 7. Finally, it may be
necessary to adjust these parameters “on the fly” during a simu-
lation, especially for large systems with complex, rough energy
landscapes (i.e., proteins) where long-lived intermediate states
may be encountered in the course of a simulation.

The complexities and advantages of actively adjusting the
numbers of bins, their boundaries, and the number of replicas in
each bin have been discussed in detail;* such schemes could be
used to detect replicas that “stall” in certain progress coordinate
bins and adjust the weighted ensemble simulation to compen-
sate. These schemes would not be able to cope effectively with
systems possessing intermediate states with lifetimes comparable
to the mean first passage time; such systems do not exhibit the
separation of time scales which weighted ensemble sampling is
designed to exploit. However, using ideas developed from none-
quilibrium umbrella sampling, it is possible to reweight phase
space density analytically in order to accelerate the attainment of
steady-state probability recycling;'” this would in turn accelerate
the determination of the rate constant in systems with t.q ~ fg, at
the possible expense of efficient sampling of the transition path
ensemble.

Finally, it should be noted that the weighted ensemble
approach is but one instance of a class of “interface-based”
enhanced sampling techniques which share a number of stren-
gths and potential weaknesses;'"**” other such techniques
include transition interface sampling (TIS) and variants, /6,10
forward flux sampling (FFS),*’ and milestoning.” All of the
methods in this class are rare event sampling methods that divide
phase space along distinct interfaces, and each method is capable
of providing realistic kinetic rates. Provided a well-chosen pro-
gress coordinate, these methods are equivalent in principle with
respect to the information which can be obtained from them and

the efficiency with which that information is obtained, at least for
equilibrium systems. Among these methods, however, the
weighted ensemble approach is uniquely flexible; in particular,
sampling can be maximized while minimizing computational cost
both by dividing phase space according to arbitrary boundaries in
any number of dimensions and by adjusting the level of sampling
within each region (by adjusting the number of simulation
replicas within a bin). The cost of this flexibility, however, is
the complexity of determining efficient choices for parameters
such as the progress coordinate, bin boundaries, and the number
of replicas per bin. In situations where a reasonable progress
coordinate cannot be determined, a method not dependent on a
progress coordinate (such as transition path sampling®*** or a
recently developed variation of milestoning”®) may be necessary.
Similarly, if efficient choices for simulation parameters (such as
bin boundaries and the number of replicas per bin) cannot be
made in advance and adjustment of these parameters during a
simulation is impractical, then a method like FFS (for which
analytical expressions for efficiency as a function of simulation
parameters exist’"’>) may be a better choice.

4.5.Why Are Efficiencies What They Are? The efficiency of a
weighted ensemble simulation is largely determined by weighted
ensemble simulation parameters, particularly the propagation/
resampling period 7, the choice of progress coordinate(s), and
the locations of bin boundaries.** For some systems, brute force
simulation is already highly efficient at sampling the molecular
association events; this is confirmed by the modestly increased
weighted ensemble sampling efficiencies (S and S.q) for
methane/methane, Na*/Cl~, and methane/benzene. However,
the fact that the weighted ensemble approach increases rather
than decreases efficiency indicates that, even in such cases, the
weighted ensemble technique is capable of accelerating sampling
of both k and F(t.4). On the other hand, the very high relative
efficiency of sampling in K*/18-crown-6 ether is particularly
encouraging. Despite the small size of the system, brute force
MD was incapable of effective sampling of rate constants and
transition event duration distributions for K /18-crown-6 ether,
almost certainly due to the high (approximately 14 kg T, 8.3 keal/
mol) barrier to dissociation. Weighted ensemble sampling was
able to obtain self-converged values of both the rate constant k
and the transition event duration distribution F(t.4). This is
primarily because probability recycling completely circumvents
the necessity to climb the 14 kT dissociation barrier in order to
observe another binding event.

These results point encouragingly to the ability to simulate
protein—protein binding events with weighted ensemble molec-
ular dynamics. With well-chosen bin boundaries, the weighted
ensemble technique should increase sampling efficiency expo-
nentially with increasing barrier heights. This is because placing
bin boundaries sufficiently close to each other effectively line-
arizes the probability of crossing a number of bins in succession,
rather than surmounting a barrier in one step with a probability
which decreases exponentially with barrier height.”> As a con-
crete example, the barrier to association in a diffusion-limited
protein—protein system is approximately 10 kg T (roughly five
times that of the model systems). If this exponential efficiency
scaling holds, then one can expect about 20 000-fold improve-
ment in sampling for such a system. In other words, if a given
computational resource is otherwise capable of generating 500 ps
per calendar day (a substantial but accessible level of computa-
tional power), this efficiency gain corresponds to reaching a time
scale of about 1 ms in 100 days, compared to the 50 ns that would
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otherwise be possible in the same amount of time. However,
since protein—protein binding pathways involve significant
metastable intermediate states (e.g,, encounter complexes’*), it
is possible for a simulation to “stall” in such a state. As discussed
above, several techniques exist which may partially ameliorate
this difficulty, but in the end, a number of simulations connecting
the intermediate states may be necessary to fully explore binding
events in such systems.

5. CONCLUSIONS

We have applied the weighted ensemble path sampling
approach to molecular dynamics simulations in explicit solvent,
enabling the detailed sampling of rare molecular association
events. We have compared the efficiency of weighted ensemble
sampling relative to brute force sampling in simulating associa-
tion events of methane/methane, Na*/Cl™, methane/benzene,
and K" /18-crown-6 ether. Relative to brute force simulation,
weighted ensemble sampling of these four systems confirms that
the weighted ensemble approach reproduces or even improves
sampling of both the rate constant k and the distribution of
transition event durations. This improvement is on the order of
300- and 1100-fold, respectively, for a system exhibiting signifi-
cant conformational flexibility (K binding with 18-crown-6
ether). We expect efficiency gains to grow with increasing
barriers to association. However, the existence of significant
metastable intermediate states may hinder sampling in such
systems, requiring the use of various enhancements to the
weighted ensemble method in order to explore binding events
in such systems. Nonetheless, these results indicate that weighted
ensemble sampling in conjunction with MD simulations is likely
to allow for the effective determination of transition paths and
rate constants for protein binding events.
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