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ABSTRACT: The characterization of protein binding processes  with all of the key
conformational changes  has been a grand challenge in the field of biophysics. Here, we
have used the weighted ensemble path sampling strategy to orchestrate molecular dynamics
simulations, yielding atomistic views of protein−peptide binding pathways involving the
MDM2 oncoprotein and an intrinsically disordered p53 peptide. A total of 182 independent,
continuous binding pathways were generated, yielding a kon that is in good agreement with
experiment. These pathways were generated in 15 days using 3500 cores of a supercomputer,
substantially faster than would be possible with “brute force” simulations. Many of these
pathways involve the anchoring of p53 residue F19 into the MDM2 binding cleft when
forming the metastable encounter complex, indicating that F19 may be a kinetically
important residue. Our study demonstrates that it is now practical to generate pathways and calculate rate constants for protein
binding processes using atomistic simulation on typical computing resources.

The complete characterization of protein binding processes
has remained elusive to laboratory experiments due to the

fleeting nature of transition and intermediate states along the
pathways. Molecular dynamics (MD) simulations can, in
principle, provide a “microscope” for viewing these critical
biological processes in full atomic detail and high temporal
resolution but are computationally demanding. While advances
in computer hardware and software have led to notable
successes in simulating protein binding events with small-
molecule inhibitors1−4 and a phosphotetrapeptide,5 such brute
force simulations (simply running the simulations long enough
to capture at least one binding event) are not practical on
typical computing resources.
Alternative simulation strategies have therefore been pursued

extensively, and these fall roughly into two categories: methods
employing discrete states using short, discontinuous trajectories
and those employing continuous trajectories to connect states.
Methods in the first category involve the construction of
Markov state models to estimate observables such as rate
constants for long-timescale processes6 and have been applied
to protein−ligand binding and/or unbinding processes.7−9

Methods in the second category involve focusing computing
power on the “rare”, or infrequent, functional motions rather
than the stable states (e.g., protein conformational changes
upon binding, and not on the unbound or bound states)
without altering the underlying dynamics.10 Although “rare
event” strategies have successfully generated pathways and rate

constants for protein−ligand unbinding processes,11,12 such
strategies (to our knowledge) have not been applied to directly
simulate any protein binding processes.
One such strategy is the weighted ensemble (WE) path

sampling method,13 which can generate continuous trajectories
and rate constants for the rare event of interest in a rigorous
manner for any type of stochastic dynamics.14 The WE strategy
exhibits a set of characteristics that, taken together, set it apart
from other rare events methods. First, kinetic observables can
be computed from a single simulation without a Markov
assumption. Second, states (e.g., unbound, intermediate, and
bound states) need not be strictly defined in advance,
permitting refinement of the definitions after completion of
the simulation.15 Third, trajectories in WE are queried at fixed
time intervals and do not need to be “caught in the act” of
crossing an interface, unlike many methods (e.g., milestoning,
transition interface sampling, and forward flux sampling),10

which permits facile interoperability with multiple software
packages whether at the atomistic scale or beyond.16,17 Finally,
our WE implementation (called WESTPA18) scales out to
thousands of CPU cores and can exhibit “superlinear”
performance by estimating observables with less overall
computing effort than standard MD simulations.19−22
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Here, we have applied the WE strategy to MD simulations of
the binding process involving a p53 peptide (residues 17−29)
and the MDM2 protein. Because many cancers are linked to
inactivation of p53 due to overexpression of MDM2,23 there is
great interest in characterizing the mechanism of the MDM2−
p53 binding process in order to determine ways to disrupt the
association.24 Furthermore, the MDM2−p53 complex is a
classic system for studying the binding process of an
intrinsically disordered peptide that folds only upon binding
to its structured partner protein (in this case, adopting a helical
conformation).25,26 MD simulations have provided extensive
sampling of the unbound/bound states of such systems,27−29

including the p53 peptide;30−32 however, to our knowledge, no
binding pathways have been reported. In this work, we
generated an ensemble of pathways for the complete
MDM2−p53 binding process starting from unbound states
(with a separation of 30 Å), yielding converged rate constants.
Consistent with previous simulation studies,33−38 our model of
MDM2 is truncated (residues 25−109), lacking the flexible N-
terminal lid over the binding cleft39 that is unresolved in the
crystal structure.26 Our simulations were carried out using the
AMBER ff99SB-ILDN force field40 and GB/SA implicit
solvent41−43 with water-like viscosity at the same temperature
(25 °C) and ionic strength (150 mM) as kinetics experiments
of MDM2−p53 binding.44

Binding Pathways and Kinetics. Our WE simulation of the
MDM2−p53 binding process resulted in a thorough explora-
tion of the space around the MDM2 protein by the p53 peptide
(Figure S1, Supporting Information) and generated a total of
182 independent, continuous binding trajectories in 15 days
using up to 3500 cores at a time on the XSEDE Stampede
supercomputer (aggregate simulation time of ∼120 μs). The
simulation was initiated from 1554 pre-equilibrated unbound
states in which the binding partners were separated by 30 Å at
random orientations, drawing from a diverse ensemble of
unbound p53 peptide conformations (Figure S2). Although this
ensemble included some nonhelical conformations, the peptide
exhibited a high propensity for helical conformations, which is
consistent with results from explicit solvent simulations30,31 as
well as those from NMR31,45 and UV resonance Raman
spectroscopy.30

On the basis of our simulations, binding involves a two-step
process in which diffusive collisions of p53 and MDM2 form a
metastable “encounter complex” intermediate, followed by
rearrangement of this encounter complex to the bound state
(Figure 1). Two thirds (∼80 μs) of our ∼120 μs of aggregate
dynamics was involved in binding pathways, with ∼10% of the
diffusional collisions between the p53 peptide and MDM2
protein being productive (i.e., eventually resulting in the native
complex); the remaining ∼90% of collisions either occurred in

Figure 1. Representative, continuous MDM2−p53 binding pathway obtained from WE simulation, superimposed on the probability distribution
over the WE progress coordinate: binding RMSD vs minimum MDM2−p53 separation (upper left) and preorganization RMSD of the p53 peptide
vs binding RMSD (lower left). The preorganization RMSD reflects the similarity of the p53 peptide to its conformation in the minimized crystal
structure and was calculated as the heavy-atom RMSD of the three hydrophobic anchor residues (F19, W23, and L26) of p53 after alignment on all
heavy atoms of p53. At the beginning of the WE simulation (1), the p53 peptide (yellow) is separated from MDM2 (gray) by 30 Å. After diffusing to
an encounter complex (2), p53 residue W23 (blue) buries in its native position (3) while F19 (red) is buried in a non-native position. The p53
peptide then rearranges to the bound state (4), with F19 (red), W23 (blue), and L26 (green) buried in their native, bound-state positions. This
trajectory is also illustrated in Movie S1.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.6b01502
J. Phys. Chem. Lett. 2016, 7, 3440−3445

3441

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.6b01502/suppl_file/jz6b01502_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.6b01502/suppl_file/jz6b01502_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.6b01502/suppl_file/jz6b01502_si_002.avi
http://dx.doi.org/10.1021/acs.jpclett.6b01502


the wrong orientation or did not occur at the binding site and
further did not lead to binding on the time scale of our
simulation. Thus, all of the binding pathways that were
generated involved unbound states in which the binding
interfaces of the partners were oriented toward each other. Of
future interest are improvements to WE strategies for
generating a greater diversity of binding pathways, including
more optimal schemes for replication and combination of
trajectory walkers along the selected progress coordinate.
Because our WE setup (e.g., progress coordinate, scheme for

combining trajectories, etc.) was intended to enhance the

sampling of association events, we did not observe a sufficient
number of dissociation events to directly compute rate
constants for the unbinding direction and therefore focused
solely on characterizing the kinetics in the binding direction
(Table 1). Our computed association rate constant kon [(7 ± 4)
× 107 M−1 s−1; here and throughout, uncertainties represent
95% confidence intervals] is in good agreement with experi-
ment (9.2 × 106 M−1 s−1).44 The somewhat faster computed
kon may be due to the fact that the MDM2 protein in our
simulation is truncated such that the binding cleft is
constitutively open in contrast to the 10% open population
in full-length MDM2,46 which was used for the stopped-flow
kinetics experiment.44 Nonetheless, the 8-fold difference in the
computed vs experimental kon amounts to a difference of only
1.2 kcal/mol in the overall free energy barrier to association.
Given that the computed rate constant for the formation of the
encounter complex k1 [(1.1 ± 0.2) × 108 M−1 s−1] is
approximately equal to the computed kon [(7 ± 4) × 107 M−1

s−1] (see Table1), the kinetics of the binding process must be
close to the limiting case where the dissociation of the
encounter complex is much slower than its rearrangement to
the bound state; that is, assuming a mechanism of

− −

H Ioo H Ioounbound state encounter complex bound complex
k

k

k

k

1

1

2

2

(1)

it must be the case that k−1 ≪ k2, such that the steady-state
expression for the overall association rate constant kon = k1k2/
(k−1 + k2) reduces to kon ≈ k1.

47 [Our WE simulation yields a k2
of (4 ± 2) × 105 s−1.] Thus, we predict that the experimentally
measured kon for the p53 peptide and truncated MDM2 protein
would be predominated by the diffusion-controlled formation
of the encounter complex. As expected, the rate constant k1 for
this initial step (108 M−1 s−1) is lower than the Smoluchowski
limit of ∼5 × 109 M−1 s−1 due to orientational constraints.48

A caveat of all rare event strategies, including WE, is that the
most probable pathways may be missed. For WE and related
approaches, relevant barriers to be surmounted could be
orthogonal to the progress coordinate(s) used to focus the
sampling. In principle, however, one needs to focus on only the
sampling along the slow, uncorrelated coordinates, thereby
capturing other faster, correlated coordinates. In our simu-

lations, the progress coordinate used to drive WE sampling
explicitly included only the slow motions of the p53 peptide
(folding and binding), and thus only MDM2 dynamics on time
scales faster than tens of microseconds (the aggregate time of
our simulation) were directly sampled in our simulation. Thus,
MDM2, which undergoes large-scale conformational changes
upon binding,36 was largely preorganized for binding, and any
effects of long-timescale MDM2 dynamics (including inter-
conversion between alternate unbound conformations) on the
rate of association are absent from this simulation. Nonetheless,
the estimated kon based on our simulation is in reasonable
agreement with experiment. We also note that our progress
coordinate was based on an experimentally determined bound
pose, and though we refined the definition of the bound state
based on our simulation (see the Methods section), exploration
of binding in systems without a known bound pose would
require a less specific progress coordinate, likely leading to
increased computational expense. This expense might be
mitigated by recently developed WE strategies such as
WExplore,49 which can generate a diverse set of binding/
unbinding metastable intermediate states at a reasonable
computational cost.11 An implementation of WExplore has
been implemented as a WESTPA-compatible plugin.
Role of p53 Residue F19. To further characterize the

encounter complex, a probability distribution was generated
as a function of the heavy-atom RMSD of three key “anchor”
residues of the p53 peptide from its MDM2-bound crystallo-
graphic pose after alignment of (a) MDM2 and (b) itself
(Figure 1). The anchor residuesF19, W23, and L26are the
residues of the p53 peptide that become the most buried upon
binding MDM2. Such deeply buried residues have been
proposed to function as anchors that smooth out the binding
process by avoiding kinetically costly structural rearrange-
ments.50 In our simulations, ∼90% of the encounter complex
conformations feature at least partial (>45%) burial of F19,
with 25% of the conformations involving complete (>95%)
burial, suggesting that F19 may be a kinetically important
residue for MDM2−p53 binding. Consistent with the potential
kinetic importance of F19, simulations by others have found
that the F19A mutant p53 peptide is unable to anchor into the
binding cleft; instead, the peptide slides along the MDM2
surface in a nonspecific manner.51 Although F19 has been
identified by thermodynamic experiments to be crucial for
binding,52 no kinetics experiments have yet been reported.
Ef f iciency of WE Simulation. To estimate the efficiency of WE

sampling relative to brute force simulation, we focus on the
amount of computing time that would be required for brute
force simulation to estimate the same kon and therefore the
same number of independent binding events as that of our WE
simulation on the same computing resource (XSEDE’s
Stampede). In particular, 0.77 ms of aggregate brute force
simulation time (e.g., as a single long trajectory or multiple
shorter trajectories) would be required to generate 182 binding
events, whereas our WE simulation required only 120 μs,
yielding an efficiency of ∼6× that of brute force sampling. If
one is satisfied with an order-of-magnitude estimate for kon, the
efficiency is ∼10×, based on 58 μs of WE sampling comprised
of 129 statistically independent trajectories. Furthermore, as the
efficiency of WE sampling increases with the free energy
barriers of the rare event process,11,21,53−55 the generation of
pathways and rate constants for significantly slower processes,
including unbinding processes, will become increasingly more

Table 1. Rate Constants and 95% Confidence Intervals for
MDM2−p53 Association

process
rate

constant value

unbound state → encounter
complex

k1 (1.1 ± 0.2) × 108 M−1 s−1

encounter complex → bound state k2 (4 ± 2) × 105 s−1

unbound state → bound state kon (7 ± 4) × 107 M−1 s−1
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feasible as the speed of dynamics engines continues to increase
(e.g., via GPU acceleration).
In closing, we have used the WE path sampling approach13,56

to simulate the binding between an N-terminal peptide
fragment of the p53 tumor suppressor with the MDM2
oncoprotein in atomic detail. Our simulation generated 182
independent, continuous binding pathways, yielding a
computed kon that is consistent with experimental studies. In
the absence of the N-terminal flexible lid in MDM2, MDM2−
p53 binding is diffusion-controlled due to the formation of a
metastable encounter complex state, which subsequently
undergoes rearrangement to the native, bound state. A key
feature of the encounter complex state is the anchoring of the
p53 residue F19 into the binding cleft of MDM2, suggesting
that F19 may be a kinetically important residue for MDM2−
p53 binding. Our WE simulations provided pathways in atomic
detail with rigorous rate constants for a complex biological
process, namely, protein−peptide binding, in 15 days on a
supercomputer, substantially more quickly than would be
possible with brute force simulations. These results suggest that
rare event strategies like WE could become an important part
of the modern biophysics toolbox.

■ METHODS
Weighted Ensemble (WE) Simulation. We simulated the
association between the MDM2 protein (residues 25−109)
and p53 peptide (residues 17−29) using the WE strategy13

with an equilibrium reweighting procedure,56 as implemented
in our open-source, high-performance WESTPA (Weighted
Ensemble Simulation Toolkit with Parallelization and Analysis)
software.18 In this strategy, a large number of simulations, or
“walkers”, are started in parallel from the initial, unbound state
and evaluated for replication or combination every τ time units
(according to the standard WE algorithm13) to maintain the
desired number of walkers per bin along a progress coordinate
toward the target bound state. In our simulations, the initial and
target states were the unbound and bound states, respectively,
and a τ value of 50 ps was used. In addition, we applied a
reweighting procedure56 at regular intervals of τ for the first half
of the simulation to accelerate convergence in sampling. This
procedure uses the local convergence of kinetics to properly
redistribute weight across the entire progress coordinate
space.56 As a test of simulation convergence, no equilibrium
reweighting was applied in the second half of the simulation to
ensure that the results remain unchanged in this part of the
simulation.
A two-dimensional progress coordinate was used throughout

the WE simulation, consisting of the heavy-atom RMSDs of the
p53 peptide relative to its MDM2-bound crystallographic
pose26 following alignment on (a) MDM2 (to monitor the
extent of binding) and (b) itself (to monitor the extent of
preorganization of the peptide for binding). A total of 396
iterations were performed to generate binding pathways, with a
maximum trajectory length of 19.8 ns. After 200 WE iterations
(about 57 μs of aggregate simulation time), both the probability
distribution of progress coordinate values (Figure S3) and the
kon (Figure S4) were approximately constant. All analysis was
performed using the latter half of the simulation with
conformations sampled every 1 ps.
State Def initions. The definition of the bound state (Figure

S5A) was refined based on the probability distributions
obtained from the WE simulation and confirmed by a separate
control simulation that was started from the bound state

(Figure S5B); the average heavy-atom RMSD of the overall
bound state from the corresponding crystal structure26 was 2.5
± 0.5 Å. Consistent with previous Brownian dynamics
simulations of protein−protein association,57 the encounter
complex through which all binding pathways pass was defined
as a specific complex (with at least one intermolecular native
contact and a certain extent of binding by the p53 anchor
residues), as delineated in Figure S5B. The unbound state was
defined as a p53−MDM2 separation of >20 Å. We note that
the particular separation used to define the unbound state had
no appreciable effect on the association kinetics (Figure S6).
Calculation of Rate Constants. Prior to kinetics analysis, the

bound state definition was refined to encompass the
corresponding free energy basin sampled by the WE simulation
(Figure S5). The rate constant kij between states i and j is
computed using the following15

=

=

=

⎛
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where f ij is the flux of probability carried by walkers originating
in state i and arriving in state j and pi is the fraction of
trajectories more recently in i than in j. C0 is the reference
concentration of binding partners, calculated as

π
=C

N r
1 1

(4/3)0
A

3

where r = 50 Å is the radius of the simulation region and NA is
Avogadro’s number. (In these simulations, C0 = 3.17 mM.) The
bimolecular form is used for the formation of the encounter
complex (k1 in eq 1), and the unimolecular form is used for the
rearrangement of the encounter complex to the bound state
(k2). Normalization by pi amounts to a separation of
equilibrium fluxes into multiple steady-state fluxes and is
what allows us to extract rate constants corresponding to
steady-state experiments from equilibrium data.58 The condi-
tional flux f ij from state i to state j is evaluated by tracing the
continuous trajectories generated by the WE approach and
noting when transitions from state i to state j occur; if such a
transition occurs any time within iteration Ni of WE sampling,
then that transition generates a contribution w/τ to the
conditional flux f ij(Ns) from state i to state j arriving within
iteration Ns, where w is the weight of the walker at the time of
the transition. These flux values may be correlated in time;
therefore, uncertainties in the rate constants kij and the number
of statistically independent binding events were determined
using a blocked Monte Carlo bootstrapping strategy13,59 (see
the Supporting Information for details). All reported
uncertainties in rate constants correspond to 95% confidence
intervals as determined by blocked bootstrapping.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge on the
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Detailed methods and Figures S1−S8, showing sampling
results and simulations, p53 conformers, the evolution of
the probability distribution of progress coordinate values,
the evolution of flux into the bound state, state
definitions refined from WE simulations, the dependence
of rate constants on the minimum separation defining the
unbound state, and autocorrelation results (PDF)
Movie S1, showing a representative trajectory of p53
binding to MDM2 (AVI)
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